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Abstract. We presentPlanetR a peerto-pee (P2P) con-
tent seach and retrieval infrastructue targeting communi-
tieswishingto shae large setsof text documets. P2P com-
puting is an attractive modelfor information sharing be-
tweenad hoc groupsof uses becaiseof its low costof en-
try and explicit modelfor resouce scaling As communi-
tiesgrow, howerer, a key chalenge becomesinding relevart
information To addressthis challenge, our designcentes
aroundindexing, contentseach, and retrieval rather than
scalablenamebasedobjectlocation,which hasbeenthe fo-
cusof recentP2P systemsPlandP takesthe novelapproach
of replicatingthe global directoryand a compa&t summary
index at every peerusinggossipimy. PlanetPthenleverages
this informationto approximatea state-of-theart documen
rankingalgorithmto help uses locaterelevantinformation
withinthelargecommual dataset. Usinga prototyeimple-
mentationtogetherwith simulation we show: (i) it is possi-
ble to designa gossipimg algorithmthatreliably maintairs a
copyof communbstateat ead peeryetrequiresonlya mod-
estamoun of bardwidth,(ii) our contert seach andretrieval
algorithmtracksthe performarte of the original ranking al-
gorithmvery closely giving P2P commuities a seach and
retrieval algorithmasgoodasthat possibleassuming cen-
tralizedserverand (iii) PlanetPs gossipig andsearch and
retrieval algorithms both scale well to commuities of at
leastseveral thousandpees.

1 Intr oduction

We presem PlanetPa peerto-peer (P2P)content seart
and retrieval infragructure tamgeted to communites

*PlanetRvassupportedn partby NSFgrantsEIA-010372 and
EIA-998604.

wishing to shae large setsof text documats suchas
scienific pubications, news articles, legal doauments,
etc. P2P computng, where communé resouces are
provideddiredly by membersf acommunty, is anat-
tractive modelfor informationshaing betweenad hoc
groups of usershecaseof its low costof entryandnat-
ural scalig model Any two uses wishing to sharein-
formation canform a P2P communiy using their ex-
isting computng resairces. As individuals join the
community they will bring moreresaurceswith them,
allowing the commurity to grow natumlly. Measure
mentsof onesuchcommunty atRutge's shav over500
usersshaing over 6 TB of data;opencommunitessuch
asGnutela [15] have achiexedmuchgreate sizes[29].

The value of an information shaing communiy is
often direcly propationd to its size: larger commu-
nities provide moreinformationto the individual uses
and so provide greate value As communites grow,
however, locating information becanesa critical chat
lenge We desigqied PlanetPspeifically to meetthis
challenge.Unlike mary existing P2Psystemsthatfocus
on providing anefficient andextremelyscaldle name-
basedobject location service [24, 23, 30, 27], our de-
signcentes arourd anindexing andcontentseard and
retrieval core. This desigh is motivatedby the suaess
of thelntemetseachenghneswhichamuesthatcortent
addressingis anintuitive paradigmfor uses to manag
andacces large volumesof information.

By tamgeting the P2Pmodel however, PlaneP must
face congraints not apgdicable to the current Internet
searchengnes. Theseinclude: (a) thereis no cen-
tralized adminstratian, managemetn or coordnation,
(b) commural resoucesmay fluctuate rapidy andun-
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Nickname | Status | | Kers

Figure 1. A PlaneP communly is a dynamic set of
peess wishing to shate a set of documentsdistributed
acrossthe peers’ local data stores Peers continually
gossp to help eadh othe maintan a local copy of the
global diredory for contert seach andretrieval.

predctably asthe presere of peas online is uncan-
trolled and unpredidable, and (c) resaircesare typi-
cally fragmentedandpotentially sprea acros wide ge-
ogrgphic ares. Thesecondraints meanthat PlaneP
canrot employ the currentmodelpradiced by all Inter-
netsearctengnes:crawl theinformaton souces,bring
the sharel informationto a certralized locaion with
massve compuing power, and allow clients to quey
the centializedinformationrepasitory.

PlanetPinstead takesthe oppasite appoachof repli-
cating a compactsummaryof the entire index at every
peerusing gossiping [8]. More speifically, all mem-
bersof a PlanetPcommunty agreeto continually gos-
sip aboutchargesin the communit to help ead other
maintan a local copy of a global direciory (Figure 1).
This directory contans the namesandaddesseof all
current membersaswell asaBloomfilter [1] permem-
ber that summarizs the setof termscontanedin the
documentsbeing shaed by that member Eachmem-
ber usesits copy of the direciory to queryagaing and
retrieve matchng documaets from the collective infor-
mationstore of the communiy.

Additionally, pees canoptionally choo® to imple-
mentan information brokerage service basel on con-
sistent hashing [20] to optimize the location of new or
rapidy charging data. For example,whena document
is firstintroducedto thecommunity the publishing peer
may wish to publicize this fact using the information
brokeragesenice sothatothe peerscanfind thedoau-
mentwithout waiting until anew Bloom filter hasbeen
geneated and gossped everywhee. Note, however,
thatunlike systemssuchasChord[30], PlanetPs infor-
mation brokerageservice only senesto optimize per
formarce. All of PlaneP’sservicescritically dependon
gossping, not the information brokerage senice. We

madethis explicit desigh decisbn becasegossping is
well suited to the P2Pervironmert, where peersmay
comeandgo freely; gossping is never detered by the
abrup leaving or abseice of ary sulsetof peers

Finally, to helpusershette navigatelarge setsof doc-
uments,PlanetPimplemerts a searchandretrieval en-
gine that is basedon a stateef-the-art text ranking al-
gorithm. A nawve implementatia of this rarking algo-
rithm would require eat peerto have theinvertedindex
of the entire community which is codly bothin terms
of bandwidh and storage. Instead, we showhow this
algorithm canbe apprximatedgiven PlanetPs Bloom
filter summarieof peeas’ inverted indexes gatherel at
eachpeer

In desiguing and prototyping PlanetPwe make the
following contributions: (1) We shav how a cortent
searchand retrieval engire appgoximating a stateof-
the-at text ranking algorithm canbebuilt in the spedfic
context of P2Pcompuing, (2) We shav that gossiping
is anappiopriate mechamsmfor replicatinginformation
acros aP2Pcommunity (3) Usingfive benchmarkcol-
lections from Smart[3] and TREC[19], we shawv that
our seart andretrieval algorithm matctesthe peifor-
manceof the original ranking algorithm, despte theac-
curag thatit givesup by using only a compat sum-
mary of eachindividual’s invertedindex. (4) We show
that PlanetPs gossping algarithm and content seart
andretrieval algorithm both scalewell to communties
of atleastseveralthousandpeds'.

2 Local Data Storesand Bloom Filters

PlanetPmaintairs a locd datastore at eachpeerof an
information sharirg communty. PlaneP assume that
thebast unit of storageis anXML document,allowing
it to index arbitrary datafor seart andretrie\al, regard
lessof the appications usel to creae and manipuate
thedata. A peerpubdishesan XML documaet to Plan-
etPwhenit wishesto shae the documehn Eachpub-
lished XML documentcontainstext andpossibly links
(XPointerg to extemal files. PlanetPindexesary text

IWhile muchof our simulationdatasuggesthat PlanetPcould
scalewell beyond several thousandpeers,therearetwo concerns.
First, if we admituserswith only modem-speg conrectvity, it is
difficult for themto downloadtheindex summaryandglobaldirec-
tory whenthey first join the community. Second,simultaneously
joining of a large numberof new memberswith large indexesto
sharecanrequirelarge aggrejategossipingnetwork volume.
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in a published XML documett aswell aslinked ex-
ternd filesif they areof aknowntype (e.g.,posscript,
PDF, or text), thus providing backvard compdibili ty
for peersto shae andseart for non-XML documetts.
Eachpublished XML documentis storedin the local
datastoreof the publishing pee; external files are not
stored by PlanetP

PlanetPstares the terms extracted from published
documentsin a local invertedindex. PlanetPsumma-
rizestheinvertedindex of eachpeerusing a Bloom fil-
ter [1] and,asshal be seenbelaw, diffusesthis sum-
mary acrass the entire communty to supprt commu-
nal contentseach andretrieval. Briefly, a Bloom filter
is an array of bits usedto representa setof strings; in
our case the setof termsin the peefs invertedindex.
Thefilter is computel by obtaning » indices for each
termin the set, typically via n different hasing func-
tions, andsettirg the bit ateachindex to 1. Then,given
a Bloom filter, we canask,is someterm z a member
of the setby compuing n indices for z and cheding
whethe those bits are 1. Bloom filters can give false
postive but never false negative. Thus, given a setof
Bloom filters summariing peers invertedindexes,we
caneasily compuethe subgtof peesthatmaycontan
documentsrelevart to agivenquey.

We chocseto useBloomffilters becausethey provide
four important advartages (1) The Bloom filter is a
relatvely efficient summarymechamsm; for example
to support a false postive rate of lessthan 5% when
using two has functions we would need1.9 KB to
summarie 1000 termsand 34 KB for 50,000terms.
(2) Previous studes of file sysemshave shovn thata
majority of files charge very slowly [26, 10]. If P2P
informationcollectiors dispay the samecharateridic,
then usingBloom filters, PlanetPwill place very little
load on the communty for seachesagairst this bulk
of slowly chandgng data (3) Peerscanindependetly
tradeoff accuacy for storage. For example a peera
may chooseto combire the filters of several peersto
save spacethetradeoff is thata mustnow contactthis
set of peerswhenaer a quely hits on this combineal
filter. This ability for indepenantly tradng accuray
for storage is pariculady usdul for peersrunning on
memory-onstraned devices(e.g.,handheld devices).

2Currently XML tagsareindexed simply asnormalterms. We
will extendPlanetPto make useof the structureprovided by XML
tagsin thenearfuture.

(4) A peercanknowthatdocumentsrelevant to aquely
might exist on peersthat are currently off-line. Thus,
insteal of missingthese documentsasin curren sys-
tems, the seaching pea could arrarge to rendezvous
with the off-line pees whenthey recomectto obtan
the needd information.

3 Gossiping

At the heartof PlanetRs its gossping algorithm: Plan-
etP usesgossping to replicate a global direcory that
includesthe list of peers ther IP addessesandtheir
Bloom filters at eachpeerin the community Events
that charge the directory and so require gossping in-
cludethejoining of anew membeytherejoin of a pre-
vioudy off-linememberandachangein aBloomfilter.
We do notgossip theleaving (tempaary or permarent)
of a peer Eachpeerdiscoversthatanoher peeris off-
line whenan attemptto communcate with it fails. It
marksthe peerasoff-line in its direcory but does not
gossp this information Whenthe peerz comesbadk
on-line, its presecewill eventually be gossipedto the
entirecommuniy; eachpeerthathasmarked z asoff-
line in its directory chargesz’s statis backto on-line.
If a peerhasbeenmarked as off-line continuously for
Tpeaqd time, then all information abod it is dropped
from the diredory unde the assumgbn that the peer
hasleft thecommunty permarntly.

PlanetPs gossping algolithm is a novel combina
tion of rumor mongering andanti-entropy aspreviousy
introduced by Demerset al. [8] togetter with a par-
tial anti-entropy algolithm thatwe found improvedper-
formane significantly for dynamic P2Pervironmerts.
Demerset al’s algotithm works as follows. Supposg
thata peerzx learrs of a chang to the directory (e.qg.,it
justupdaedits Bloom filter). Every T; semnds,z ran-
domly choo®satamget pee y believedto be currently
on-line andattemgs to tell y of thechangp. If y hasnot
heardof this charge,it record thenew information and
thenitself attemptgo sprea therumorasz is doing. If
x contads n peersin a row that already knows abou
the changg, it stops sprealing the rumor. Becaus this
rumoring processcanleave a residual setof pees that
do not hearabou a rumor befare it diesout, every so
often, eachpeerperformsan anti-entrqoy opetionin-
steadof rumoring. For exampke, in ourimplemenation
of this algarithm, every tenthround of rumoring (or if
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therés currently no new informationto be rumored), a
peerz would sendan anti-entropy messae insteal of
arumor. Theanti-entropy messagesksthe targety to
senda summaryof its entire diredory to . Whenz
getsy’s summaryz paresit to seewhethery hasmore
updaedinformaiton. If so,thenz asksy for theneede
information. This combiration of pushrumoring and
pull anti-entropy helps to reliably spread new informa-
tion everywhere.

In a dynamic P2Pervironmert, however, whereru-
mors may arrive often becawse of peers’leaving and
coming thetime requredto spread a particular rumor
everywhee canbecomehighly variable even with the
above combhnedalgaithm. Thisis beausethe high ar
rival rate of new rumorsforcesthe rate of anti-entropy
to theminimum: every tenthround. If apeeris unludky
enowgh to contact anoter peerthat is also missinga
particular rumor, thenit may be several tensof rounds
befare therumorreachs everyore. To fix this, we can
increasethe frequeng of performing anti-entropy, say
to every otherround or everyfifth round. Unfortunatdy,
anti-entropy is muchmoreexpersive thanrumoring be-
cau® a summaryof the entre directory mustbe sent
Thus, we would be experding much more bandwidh,
redwcing the efficiengy of gossping.

Instead, we decdedto extend eachrumoring round
with a partial anti-entropy exchange, which works as
follows. Whenz sendg arumormessageo y, y piggy-
backs the ids of a small numberm of the mostrecent
rumorsthat y learred abou but is no longer actively
spredling. x canthenched to seewhetherit is missing
sometling that y recenly learnal abaut and pull that
informationfrom y. This partid anti-entrofy requires
only one extra messge in the cas that y does know
sometling that  doesnot. Further theamoun of data
piggybacked on y’'s messag is very small,in order of
tensof bytes. We have found the inclusion of this par
tial ani-entropy stepto significantly reducel the vari-
ationin thetime requred to inform the entire commu-
nity abou a particularnew piece of informationaswell
asrequring muchlessbandwidh thanif we performed
anti-entropy moreoften

Finally, PlanetPcurrertly usesa basegossping in-
terval T, of 30 secads to accommodte pees with
relaively slov communi@tion links. PlanetPdynam-
ically adjugs this baseinterval to redwce bardwidth us-
agewhenthesystemhasreadeda stalle configumation
Whena peerz does not have any rumor to spread, it

maintairs a court p of the numberof timesit hascorn
tacteda pee thathasthe samedirecory asit does[8].
Wheneer this court readies a gossp-less threshold,
currertly setto 2, z increasedts gossipinginterval by a
slowdownconsant, currently setto 5 secomls. After
increasing its gossping interval, z reses p to zeroand
continues.In this manneythe gossip interval cangrad
ually increaseto amaximumof 2 minutes.Ontheothe
hand,wheneer z recavesarumor messag or finds a
new piece of information through anti-entrqoy, it im-
mediatdy resetsits gossping interval to the default in
orderto efficiently diffuse this new information.

Dynamicaly adaping the gossping interval hastwo
advantages. First, we do not nedal to definea termi-
nation condtion given the probabilistic nature of the
algoiithm. Secondwhenglobd conssteny hasbee
achiewed, the bardwidth useis neggligible after a shot
time.

4 Information Brokerage

While gossipingis anelegart solution for maintaning a
copy of theglobd directory ateachpeer enabing pees
to accuraely seach the entire communé datastore, it
doeshave two disadvantages:(1) new or rapidy chang
ing information sprealsslowly (e.g.,arond 10 minutes
in communitesof several thousand peeswith our cur-
rentsettngs),and(2) informationis always diffuse ev-
erywhee, evenif it is relevantto only a small subse
of the community To addesstheselimitations, pees
in PlanetPcan also chooseto implemer an informa-
tion brokerageservie thatusesconsstenthashng [20]
to publish and locate information. As already men-
tioned, however, this senice is an optimization rathe
thana necesarypartof PlanetPIn particular, this ser
vice makesno guamnteeasto the safetyof information
publishedto it. If a memberleaves abruply without
passig on its portion of the publisheddata that data
will belost (We showhow this unreliable service can
be a usefd optimization when discussing PlanetFSa
semantt file sysemthatwe arebuilding using PlanetP
in Section6.)

PlanetPs information brokerage senice works as
follows. Informationis pulishedto the brokerageser

3The variousconstants/paraaterswe usewerefound to work
well in our currentsimulationbut canbe tunedasneededor ary
particularcommunity
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vice asan XML snippet with a setof assaiatedkeys
(terms) and a discad time. The network of brokers
use corsistert hasing [20] to parttion the key space
amongthem. In particular, eachactive memberchooses
a unique broker ID from a precetermired range (0 to
mazID). Then,all memberarrangethemselesinto a
ring usingtheir IDs. To mapakey to a broker, we com-
putethe hashH of thekey. Then,we sendthe snippet
andkey to the broker whoselD makesit the leastsuc-
cesso to H mod maxID onthering. The snippetis
discadedafterits discad time expires
Therealcompleity of implemening thissenicelies
in handing the dynanmic joining andleaving of mem-
bers. Becauseof spa® corstrairts, however, and the
factthatthis seniceis not centrd to this pape, we refer
theinterestedreacerto alonge techrical report[7] for
thedetals of this part of theimplemenation

5 Content Search and Retrieval

PlanetPsupports two types of seartes: an exhaustive

seard thatwe expect to mostly beusedby applicatiors

written on top of PlanetPanda selecive seach more
suiteble to user-initated searbiesthat usesthe vector

spa ranking modelto choo® the sulsetof documents
mostrelevant to a query.

5.1 Exhaustive Search

To exhaustively searcha PlanetRdatastore,anapdica-

tion poses a quely repregntedasa conjunction of keys
sepaated by white spaces. When presentedwith this

qguer, PlanetPseachesthe Bloomfiltersin its local di-

rectay to obtainalist of canddatepeeastha mayhave

documentsmatching the query Then,PlaneP corntacts
thesecanddatepeersaswell asthe apprgriatebrokers
to retrieve matching XML documets. Onceall con-

tactad peeshave replied, the setof retrieveddoauments
is returnedto thecaller.

Persistent Queries. PlanetPalsosupportspersistent
guetes for exhaustive searcles. Persisent queies al-
low peeas to speify interestin new informaton en-
tering the systemwithout having to congantly poll as
well asproviding a way for applicatiors to implement
traditional distributed mechafsmslik e condtion vari-
ables pubish/subscrbe communiation, tuple spaes,
etc. When posting a persigent query, the poder pro-

vides an objed that will be invoked wheneer a new
matchirg snippetis found, eitha whena nenv Bloom
filter is recaved or a new shippet is published to the
brokers.

5.2 Vector SpaceRanking

To provideamoreselective seachthatwould helpuses
better navigate large setsof documents,we have im-
plemeneda distributedrarking algarithm basdon the
vector spae model [31], a stateof-the-art text-based
ranking algorithm. In this sectbn, we first give a brief
desciption of thevecta spaceaarking model,thendis-
cussthe chargesthatwe have introducedto adayt this
algoiithm to PlaneP.

Background. In avectorspacerarking model,eath
documat andqueryis abstactly representedasa vec-
tor, whereeachdimensbn is assocatedwith a distinct
term; the spaewould have k dimersionsif there were
k possble distinct terms. The value of eachcompo
nentof thevectorrepresenstheimportanceof thatterm
(typically refered to asthe weightof the term) to that
documat or query Then,given a query we rank the
relevance of documentsto thatquery by measuing the
similarity betweenthe querys vector and eachof the
canddatedocunents vectas. The similarity betwea
two vectoss is generdly measued asthe cosire of the
angle betweenthem, compugable using the following
equaton:

2oteQ WQ,t X WDt

Q[ < [D]
wherewg ; representsthe weight of term ¢ for query
@ andwp; the weight of term¢ for documentD. A
Sim(Q, D) = 0 meanghat D doesnot have ary term
thatis in Q. A Sim(Q, D) = 1, on the other hand,
meanghat D haseverytermthatisin Q. Typically, |Q)|
is dropped from the denomirator of equaton 1 since it
is condantfor all thedocuments.

A popdar method for assigiing term weights is
calledthe TFxIDF rule. Thebasicideabelhind TFxIDF
is that by using somecombindion of term frequencgy
(TF) in a doaumentwith the inverse of how often that
termshavs up in doaumentsin thecollection (IDF), we
canbalance: (a) thefactthattermsfrequently used in a
documat arelikely importantto desribeits meanir,
and(b) termsthat appea in mary documentsin a col-
lection arenot usdul for differentiding betwea thes

5im(Q, D) = (1)
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documentsfor a patticular query

Existing literature includesseverd ways of imple-
mentirg the TEXIDF rule [28]. In our work, we adgt
thefoll owing sysemof equdions assuggstedby Wit-
tenetal. [31]:

wpy=1+1og(fpst)

whereNN is the numbe of documentsin the collection,
ft isthenumbe of timesthatterm¢ appearsin the col-
lection, and fp ; is the numberof timestermt appeas
in doacumentD.

Theresuting similarity measue is

wq = IDF,

« IDF,
Sim(@, D) = = wD[tD| :

where|D| = thenumbe of termsin docunentD.

PlanetP. We cannd implemert the above relevarnce
ranking directy in PlanetPbecasewe do not have all
the necessaryinformation Instead, we apprximate
this function by bre&ing the ranking probleminto two
subproblans: (1) ranking peersaccading to the like-
lihood of ead peerhaving documets relevart to the
qguer, and(2) deciding on the numberof peersto con-
tactandranking thedoaumentsretumedby thes peers

The noderanking problem. To rark pees, we in-
troduce a measue called the inverse peer frequency
(IPF).Foratermt, IPF, is compuedaslog(1+ N/N;),
whereN is numberof peesin thecommunityandN; is
the numberof peeas that have one or moredoauments
with term ¢ in it. Similar to IDF, the ideabehird this
metricis thatatermthatis presentin theindex of every
peeris not uselll for differentiating betwee the pees
for aparticularquery Unlike IDF, IPFcancorvenienty
be computel using the Bloom filters collectedat each
peer: N is the numberof Bloomfilters, N, is the num-
berof hits for termt agains theseBloom filters.

Given the above definition of IPF, we then propose
thefollowing relevance measue for ranking pees:

R(Q) = >

teQAte BF;

(2)

IPF, 3

which is simply a weighted sum over all queryterms
containedby peeri, weightedby how usetll thatterm
is to differentiae betwee peers t is aterm, @ is the
quer, and BE; is the setof termsrepresentedby the

Bloomfilter of peer:, and R; is theresuting relevance
of peeri to quely Q. Intuitively, thisschenegivespees
that contain all termsin a query the highest ranking.
Peerghatcontain different subsés of termsareranked
accodingto thepower of these termsfor differentiaing
betweerpeas with potentially relevant docunents.

The seledion problem. As communties grow in
size,it is neitherfeasble nordesrableto contactalarge
subse of peesfor eachqueay. Thus,once we have es-
tablisheda relevanceordering of peersfor a quey, we
mustthendecice how mary of themto contact. To ad-
dressthis probem, we first assumehat the userspect
fiesan upperlimit k£ on the number of documentsthat
shoul bereturredin respamseto a query. Then,asim-
ple solution to the selecton problem would beto con
tactthe peersoneby one in the orderof their relevance
ranking, until we have retrieved k documents.

Unfortunately, this obvious apprach leadsto terri-
ble retrieval perforomance[6]. To addessthis prob-
lem,weintroducethefoll owing heurigic for adagively
determinng a stopping point. Given a relevance or-
dering of peers,contact them oneby-one from top to
bottom. Maintain a relevanceordeiing of the docu
mentsreturred using equaton 2 with IPF, subdituted
for IDF;.

Stop cortacting peerswhenthe doacumentsretumed
by a sequaceof p pees fail to contribute to thetop &
ranked documents.Intuitively, the ideais to getanini-
tial setof £ documens andthenkeepcontacting nodes
only if the chane of thembeingableto provide doc
umentsthat contibute to the top & is relatively high.
Using experimental resuts from a numbe of known
documant collections (seeSection7), we proposethe
following function for p

p:P-I-%J-I-Q{:—OJ 4)

whereN is the sizeof the community.

Note that while we have presated the above algo-
rithm as contecting peersone-ky-one, to reduce query
respase time, we might choose to contact peersin
groups of m peersat atime. Sucha paralkl algorithm
tradesoff potentially contactingsomepeesunne@ssar-
ily for shoterresmpnsetime.
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6 PFS:An Example Application

We have implemerned PFS, a personal semanticfile
system, to showhow the various compmentsof Plan-
etPwork togetherto provide a uselul infrastrudure for
informationsharng. PFSprovidessimilar functionality
tothesemantt file sygemdefinad by Gifford etal. [14].
PFS5 novelty lies in the fact that it supports content
guerying acressadynamic commurity of useswithout
requring certralized indexing. PFSdoes not manage
storggediredly. Filesarestoral usingthelocalfile sys-
temof eachpeer;files to be shaedwith thecommunty
arepublishedto PFS which thenusesPlanetPto malke
it possible for the entire communiy to searchfor these
files basa onits content.

EachuserusesPFSto shae docunentsandto crede
a persmal semaric namespceover the setof sharel
documents. Currertly, eachnamespee is privateto a
singe user Like the semant file system, a direcory
is crededin PFSwheneertheusea possaquery PFS
creaeslinks to files that matchthe queryin the resut-
ing direcory. If afile is createl or modified suchthat
it matchessomequery PFSwill update the diredory
to have alink to this file. Building a query-based sub-
diredory is equvalentto refining the query of the con-
taining directory.

PFSis compried of three comporents: Explorer,
File Sener, and PFSCore. The Explorer provides a
GUI interfaceto theuse. TheFile Seneris avery sim-
ple websener that providestwo functions: (a) return a
URL whengiven a local patthame,(b) return the con-
tentof the appopriate file in resporseto a GET opela-
tion.

Whenthe userpublishesafile, PFS(Core)obtansa
URL for thatfile from theFile Sener. PFSthenembeds
this URL andapointerto thefile in a XML snippetand
publishesit to PlanetPwhich autamaticallyindexesthe
file. PFSalsoasksPlanetPto publish the XML snip-
petontheinformaton brokerageservice using the 10%
mostfrequently appearing termsin the file with a dis-
cardtime of 10 minutes. All termsare autanaticaly
summariedin the Bloom filter. This dual pubication
allow peersto find afile in avery shot time after pub-
lication if they areseachingfor oneof the key thatap-
pearsmostoftenin thefile. For othea keys, the newly
publishedfile canonly be found whenthe new Bloom
filter hasbeencomputed and diffusedthroughou the
systen.

Whentheusercreats adirectory, PFSposests name
asa persbtentexhaustive query to PlanetPFile names
areextradedfrom snippetsreturnedby PlaneP anden-
teredin to the directory. PFSautamatically updates
directories for addition via PlanetPs persstentquery
upcals. Updates for removal—that is, when a file is
deleta by its owner or modifiedto no longer mapto
the directory’s query—is moredifficult. Wheneer the
useropensa directory, PFScheds the last time that
thedirectory wasupdaged. If thistime is greatrthana
fixedthreshold PFSrerurstheentirequeryto getrid of
stalefiles.

Given PlaneB, we were able to implemert PFSin
lessthantwo weeks,with muchof thefirst weekgiven
to desgning PFSgraphical interface.

7 PlanetP Performance

We now turnto evaluating PlaneP’s perfomance con
centrding on PlanetPs gossping algoiithm and con
tentseart andretrieval engne. We refer the interested
reade to [7] for theperfomanceof theinformaton bro-
kerage senice. We bggin by running a numberof mi-
cro benchmarksagairst our prototype implemeration
to give anideaof the costof basicPlaneP opeiations
the protatype is written entirely in Java and currently
stand at arourd 7000 lines of code Then, we study
thescahbility of PlaneP’s gossipingalgarithm, bothin
termsof the time requred to distribute informaton as
well asthe requred bandvidth. Finally, we studythe
effectivenessof PlanetPs conten searchand retrieval
algorithm using a numberof berchmark data collec
tions.

7.1 Micr o Benchmarks

We startt by measuing thecods of PlaneP’sbasc oper-
ations: the manipulation of Bloomfiltersandmanagng
the invertedindex of the local datastoreat eachpeer
Tablel lists theseopemtionsandtheir coss whenmea-
suredon an 800 MHz Pentium 1ll PCwith 512MB of

memory running a Linux 2.2 kemel and IBM’s JVM

v1.3.0. We obseve that while we have not optimized
ourimplementatio at all—for easeof implementéion,
mostdatastructureswereimplemened using the Java
Collections Framavork—the cods after JIT compila

tion is quite reasmable For examplg it takes only
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| Operation |

Costbefore JIT (ms) |

Costafter JIT (ms) |

Bloomfilter insertion

17+ (0.111 * no. keys)

4+ (0.011 * no. keys)

Bloomfilter search

0.107* no. keys

0.010* no. keys

Bloomfilter compess

411+ (0.016* no. keysin filter)

21+ (0.0QL * no. keysin filter)

Bloomfilter decompess

0.028 * no. keysin filter

0.005* no. keysin filter

Insertioninto invertedindex

5+ (0.137* no. keys)

14+ (0.024* no. keys)

Searchnvertedindex

0.024+ (0.0QL * no. keys)

0.0 + (0.0001* no. keys)

Table 1. Costsof PlaneP’s basic operations Eacd costis presentedas a fixed overhead plus a maminal per key
overheador justthelatter; for example the costfor inserting n keysinto a Bloomfilter is 4ms + 0.011n.

| Operation | Cost(ms) |
CPUgossipingime 5ms
Basegossipingntenal 30sec
Max gossipingnterval 60sec
Network BW 56Kb/sto 45Mb/s
Messagdeadesize 3 bytes
1000keys BF 3000bytes
200 keys BF 16000 bytes
BF summary 6 bytes
Peersummary 48 bytes

Table2: Constantsusedin our simulation of PlaneP’s
gossping algorithm.

abou 1/2 a secand to createa Bloom filter for 50,0
terms. It takesonly 50 msto seard for a query with
five termsacress1000Bloom filters.

We currently compressBloom filters to redue the
gossping bandvidth becasewe areusing consantsize
(50 KB) Bloom filters for easeof implemernation. The
choensizelet us summariz up to 50,0 termswith
lessthan 5% error. Our compiessionscheneis a run-
length compressionthatusesGolombcodes[16] to en-
coderuns,which outpaformsgzip in our specfic con-
text. Table 1 shows that decanpressia, which ocaur
much more frequently, is reasombly efficient in time.
In the future, we will almog certainly move to variale
size filters and so the compresion may no longe be
neeckd.

7.2 (Gossiping

We have built a simulata to assesthe reliability and
scalaility of PlaneP’s gossping algorithm. We used
measuementof our protaypeto parametdaze thesim-
ulator; Table 2 list these paraméers. We validated
our simulato by comparng its resuts againg num-
bersmeasued on a clustea of eight 800 MHz Pentium

Il PCswith 512VIB of memory running a Linux 2.2
kernd and the BlackDonvn JVM, versian 1.3.0. We
switchedto BlackDawvn’s JVM for this study becaise
it hasa smallermemoryfootprint thanthe IBM JVM.
Evenwith this switch, the JVM’sresoucerequremens
effectively limited us to abou 25 peersper machire,
allowing us to validate our simulaton for communiy
sizesof upto 200 peers

Propagating new information. We begin by study
ing thetime requredto gossp anew Bloom filter sum-
marizing 1000termsthroughou stabe communitesof
various sizes. We are using 1000wordsbecaisePlan-
etP send diffs of the Bloom filters to save bandvidth;
thus, this scerario simulaesthe addition of 1000 new
termsto somepee’s invertedindex. Measuing the
propajationtime is importantbeauseit is the window
of timewherepeas’ diredoriesareinconsisent,sothat
somepeeas may not be ableto find the new (or modi-
fied) documents.

Figure2(a)plots the simulated propagatio timesfor
Six scenaios:

LAN Peersareconrectedby 45 Mbpslinks. Peerause
PlanetPs gossping algarithm.

LAN-AE Peerareconnetedby 45 Mbpslinks. Peers
only usepush anti-entropy to propagateinforma-
tion asopposedto PlaneP’s combhnedalgorithm.
Anti-entropy only appracheshave beensucess-
fully usedto synchronize smallercommunitesin
NameDropper [18], Bayou[9] andDeno[22]. In
fact, our first gossping algarithm wasa pushpull
anti-entropy basedon thes previousworks. We
quickly reaized, however, thattherequred band
width grew rapidy with community size and so
moved moretoward rumormongering.

DSL-10,30,60Peersareconrectedby 512 Kbpslinks.
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Figure 2: (a) Time, (b) aggregated netwok volume and (c) average per-peer bandwidth required to propagate a
singe Bloomfilter containing 1000keys everywheie vs. communitysize

PeersusePlanetPs gossping algarithm. Gossp-
ing intervalis 10, 30,and60 secomisrespectively.

MIX Peersarecomectal by a mixture of link speeals.
Usingmeasuementof theGnutella/Napstecom-
munitiesrecerily repoitedby Saroiuetal.[29], we
createamixture asfollows: 9% have 56 kbps,21%
have 512 kbps 50% have 5 Mbps, 16% have 10
Mbps,and4% have 45 Mbpslinks.

Figure 2(b) shavs the aggegate network volume
usedto propayatethenew pieceof informationthrough-
out the communiy. Figure?2(c) showns the averageper
peergossping bandvidth during the propagation pe-
riod for DSL-10,DSL-30,andDSL-60.

Basedon thesegrapts, we make seseral observa-
tions. (1) Propagathn time is a log function of com-
munity size implying that gossping new information
is very scahble. For examplke, propagationtime for a
communit with 500 pees usingDSL-30is abou 200
secads,rising to only 230 for a communitywith 1500
peers For DSL-30, we have continuedthe simulaion
for communty sizesof up to 5000 At 5000,the prop-
agation time is still only 250secads. (2) Eventhough
a chang is diffused throughoutthe entire communty,
the totd numbe of bytes sert is very modest,again
implying that gossiping is very scalalbe. For example
propagationof a 1000new keys only requresatotal of
11 MB to be sent leadirg to a perpeeraverage bard-
width requrementof lessthan 40 B/s when the gos-
siping interval is 30 semnds. (3) We caneasly trade
off propagation time againstgossiping bandwiah by
increasingor deaeasimg the gossiping interval; slower
gossping ratemeansslower corvergercebut alsolower

bandwidh usag. (4) Our algorithm significantly out-
perfomsonethatusesonly anti-entrogy for both prop-
agationtime andfor network volume. With respetto
network volume this is becaise anti-entropy requres
the communi@tion of the entire directory (in summary
form), even whenthereis only one difference, mak-
ing messag size proportional to the community size.
In PlanetP since most information is spreadvia ru-
moring andthe partal anti-entropy, messag sizesare
mostly proportional to the numbe of charges being
propayated,not the communiy size. With respet to
propaationtime, apushonly algorithm oftenhastrou-
ble locating the last few peersthat have not receiwe a
piece of new information, and so is outpaformed by
our pushpull algorithm.

Joining of new members. We now assasthe ex-
penseof having new membergoin anestallished com-
munity. We perform a slightly different experiment
thanthe previousone performingthe sameexperiment
would leadto very similar conclusions exceptthat the
requred network volume (and so bardwidth) would
be somavhat highe if we assune thata nev member
would be propagatinga Bloom filter represening more
than 1000 keys. Instead, in this experiment, we stat
a communty of n pees andwait until their views of
memberslp is congstent Then,m new peerswill at-
temptto join the communiy simultaneotsly. We mea-
surethetime requreduntil all membershave a corsis-
tentview of thecommuniy againaswell astherequred
bandwidh during this time. For this experiment, each
peerwas setto shae 20,0® keys with the restof the
communitythrough their Bloomfilters.

Figure 3 plots the time to read congsteng vs. the
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ead wishingto share 20000 keys.

numberof joining pees for an initial community of
1000 nodes. Theseresuts shawv that, if thereis suffi-
cient bardwidth (LAN), consstercy is reacled within
appoximately 600 secomls (10 minutes), even when
the communiy grows by 25%. In contrast to propa-
gatinga charge,however, thejoining processis amuch
more bandwidh intensive one ajoining membemust
retrieve 1000 Bloom filters represening a total of 20
million keysfrom theexisting communiy. Also, having
250membergoin atoncemeanghat250 Bloom filters
representirg 5 million keys mustbe gosspedthrough-
out the communiy. As a result corvemerce times
for communitesinterconnested only with DSL-speed
links are appioximately twice that of LAN-connectel
communites. Finally, cornvergencetimesfor the MIX-

10

connetedcommurities becaneunaceptdle, possbly
requring from 50 minutesto overtwo hours

We draw two condusions from theseresuls. First,
evenin this worst-casescenaio for PlanetPwhich we
do not expect to occur often, if peeas have DSL or
highe conrectwvity, thenPlaneP does quite well. Sec-
ond,we needto modify PlanetRAf we areto accanmo-
dateuserswith modem-peedconrections. In paricu-
lar, whenthey first join, the time to download the en-
tire diredory would likely take too long. For example,
to downloada thousandBloom filters we would trans
fer 16MB which takesaround 40 minuteson a modem
connestion. Thus, eithe we shauld exclude peersthat
do nothave atleastDSL speedor we needto allow for
a hev modem-conectal peea to acqure the directory
in piecesover amuchlongerperiod of time. We would
alsoneedto supprt someform of proxy seach, where
modem-conecte pees canaskpeerswith bettercon
nectvity to helpwith seaches.

Further we decided to modify our gossiping algo-
rithm to be bandvidth-avare assumiig that pees can
learn of eachother’s conrectvity spea. The motiva-
tion for thisis thata flat gossping algarithm penaizes
thecommuniy to spreal informationonly asfastasthe
slow membersango. Thus,we modify the basicPlan-
etPgossping algarithm for pegswith fasterconnectiv-
ity to preferentally gossp with eachothers and pees
with slower conrectvity to prefeentialy gossp with
eachothes. Thisideais implemeriedasfoll ows. Peers
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aredividedinto two classes fastandslow. Fastincludes
peerswith 512 Kb/s conrectiity or better. Slow in-
cludes peersconnested by modems. When rumoring,
a fast peermakes a binary decksion to talk to a fast
or slow pee. Probaility of choosng a slow peeris
1%. Oncethe binary decisbn hasbeen made the peer
chocsesa particular peerrandanly from the appiopri-
atepool. Whenperforming anti-entropy, afastpeeral-
wayschocsesanotlerfastpeea. Whenrumoring, aslow
peeralwayschoasesanoherslow guy (sothatit canrot
slow down thetamget pee) unless it is the soure of the
rumor; in this cag, it choogsa fastpeerastheinitial
tamget. Finally, when performing anti-entropy, a slow
peerchoo®sary node with equalprobaility. We will
study the effectsof this modifiedalgoiithm below

Dynamic operation. Finally, we study how well
PlanetPs gossping perfomsin a dynamiccommunty
of rejoining andleaving peers We beagin by studying
the potertial for interferen® betweendifferent rumors
aspees rejoin the communty at different times. This
expelimentis asfollows. We have a stale communty
of 1000 online peers 100 pees join the communty
accading to a Poissonprocesswith an averageinter-
arrival rate of once every 90 secomls. Figure4(a) plots
the cumulatve percernageof eventsagairst the corver
gene time (how long befare an arrival eventis known
to everyore in the communiy) for PlanetP$ gossp-
ing algarithm againstwhat hapgensif the patial anti-
entrqoy is not included. Obsenre that without the par
tial anti-entrqoy, overlaging rumorscaninterferewith
eachother, causng muchlarger variaton in thecorver-
gen@times.

To complete our exposdtion, we study a dynamic
communiy with the following behaior. The total
membersip of the communty is 1000 members.40%
of the membersare online all the time. 60% of the
membersare online for an average of 60 minutes and
thenoffline againfor anaverage of 140 minutes. Both
online and offline times are geneatedusing a Poissm
process.5% of thetime, whena peerrejoinsthe online
communiy, it has1000 new keys. Theseparameters
wereagainbasedoughly on measurmentsreporedby
Saroiuet al. [29] (except for the numbe of new keys
being sharedoccasiondly) andare meantto be repre-
sentdive of realcommunites.

Figure4(b) plotsthe cumulatve perentageof events
agains the corvergencetime. We obsewe that with
sufficient bandwvidth, corvergence time is very tight
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arourd 400 secads. For the MIX communty, our
bandwidh awaregossipingalgorithm allowspeerswith
fastcomectinsto learnabaut eventsmuchmoreexpe-
ditiously than pees with slow conrections. Even for
peerswith fastconrectiors, however, the corvergence
times are much more variade. This is beausefast
peerssometimestill have to talk to slow pees andso
their progressmay be impeded Whenlooking close
into thefastnodescorvergencetime, we found thatup
70% of the nodeswereableto seeall othe fastnodes
asquickly asin theLAN case.

Figure 4(c) plots the aggregyate bandvidth agains
time. This graph shavs tha the normaloperation of a
communityrequresverylittl e bardwidth, rangng from
betweenlO0KB/s to 1 MB/s acrosghe entire commu-
nity.

Finally, Figure5 plots the cumuktive perentageof
eventsagains corvergercetime for adynamiccommu-
nity of 2000pees. LAN andMIX areasbefore MIX-
F gives corvergencetime for joins and rejoins of fast
peerswith the cornvergerce condition being that only
fastpeersneedto learnabou the event. MIX-S gives
corvergerce time for joins and rejoins of slov pees
with the samecorvergerce condtion. Obsene thatour
bandwidh aware gossipng algorithm allow fastpees
to learnaboutnew eventsquite efficiently. At the same
time, it doesnot ham the slow pees beyond the fact
that they will be slow anyway becawse of their band
width limitations.

Summary. Resultsacros the above setof experi
mentssuggestthat gossping worksreliably andscales
well to the range of several thousandpeers The two
concens for scaling beyond this level is the time re-
quired to downloadthe entire setof Bloom filters when
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apeerfirst joins acommunty if thatpeeris bardwidth
limited, andthe aggreyatebardwidth requred for new
memberdo join thecommuirity.

7.3 Searh efficiency

We now turn to assesing the pefformanceof PlanetPs
seart andretrieval engne. We measue perfarmance
using two acceped metrics, recall (R) and precision
(P), which aredefinedasfoll ows:

R(Q) = no. relevant docs.presentedto the user
~ total no. relevart docs.in collection

(5)

P(Q) = no. relevantdocs. presetedto the user
~ totalno. docs presentedo theuser

(6)

where @ is the query posta by the user R(Q) cap-
turesthe fraction of relevant documentsa searchand
retrieval algarithm is ableto identify andpresemto the
user P(Q) descibeshow muchirrelevantmateral the
usermay have to look through to find the relevant ma-
terid. Idedly, onewould like to retrieve all therelevant
documentsand not a singe irrelevant one. If we did
this, we would obtan a 100% recdl and 100% pred-
sion Also idealy, we would wantto conta¢ as few
peersaspossibleto achieve 100%recalland100% pre-
cision.

We asses PlaneP’s perfamanceby compaing its
achiexedrecdl andprecision agairst the original TFx-
IDF algoiithm. If we can matchthe TFxIDF's per
formarce, thenwe can be confidet that PlanetPpro-
vides state-d-the-art seach andretrieval capailitie$,
desjite theaccungy thatit givesup by gossping Bloom
filters rathe thanthe entireinvertedindex.

We usefive collectiors of docunents(andasso@ted
gueiesandhumanrelevanceranking) to measue Plan-
etPs perfomance; Table 3 presets the main chara-
terigtics of thesecollections Four of the colledions,
CACM, MED, CRAN, and CISI were previously col-
lected andused by Buckley to evaluateSmart{3]. These
collectionsarecomprisedof smallfragmens of text and
summaris andso arerelatively smallin size. Thelast

“when only using the textual contentof docunents, as com-
paredto link analysisasis doneby Googleand otherweb search
engineq?2]
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colledion, AP89, was extracted from the TREC col-
lection [19] andincludesfull artices from Assocated
Presgoublishedin 1989

To measurePlaneP’s recdl and precison on the
abore collections we built a simulabr that first dis-
tributesdocumers acrossa setof virtual peegsandthen
runs and evaludes different seart and retrieval algo-
rithms. The distribution of doaumentson our simu-
lation foll ows a Weibull function, which is motivated
by obseving current P2Pfile-shaing commurities. (In
[6], we alsostudya uniform distribution andshow that
PlanetPdoesequaly well althowh it hasto contact
more peersas documentsare more spread out in the
community) To comparePlaneP with TFxIDF, we as-
sumethe following optimigtic implementation of TFx-
IDF: eachpeerin the communit hasthe full inverted
index and word court needel to run TFxIDF using
ranking equaton 2. For eachquery TFxIDF would
computethetop k£ ranking docunentsandthencortact
the exact pees requred to retrieve these documents.
In both cases, TFxIDF and TFxIPF the simulator will
pre-pocesshe tracesby doing stopword removal and
stemming.Theformertriesto eliminate frequently used
wordslike the, of, etc. andthe secoml triesto conflae
wordsto their root (e.g.running becmmesrun).

Figure6(a)plots TFxIDF'sandPlaneP’s average re-
call andprecsionover all providedqueriesasfunctions
of k for the AP89 collection. We only showv resuls
for this collection to save spacetheseresuts arerepre
sentdive for all collections. We refer the reade to our
web site, http//www.panic-ld.rutgers.edy, for resuls
for all collectiors. Figure 6(b) plots PlaneP’s recal
again$ commurity sizefor a constant k& of 20. Finally,
Figure6(c) plots the numbe of peerscontaded agains
k.

We male several obsewations. First, using TFxIPF
andour adapive stoppng condition, PlanetPtradks the
perfomanceof TFxIDF closel. It perfoms slightly
worsethan TFxIDF for £ < 150 but catches up for
larger £’s. In fact, for someof the collections, TFx-
IPF slightly outperforms TFXIDF at large k’s. While
theperformancedifferenceis negligible, it is interestirg
to consder how TFxIPF canoutperform TFExIDF; this
is possble sinceTFXIDF is not alwayscorrect. In this
case, TFxIPF is finding lower ranked documentsthat
weredeterminedto be relevantto queies, while some
of the highly ranked documentsreturned by TFxIDF,
but not TFxIPF, werenotrelevant.
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| Trace | Queries | Documents| Number of words | Collection size(MBs) |

CACM 52 3204 75438 21
MED 30 1033 83441 1.0
CRAN 152 1400 117718 1.6
CISI 76 1460 849y 2.4
AP89 97 84678 12%03 266.0

Table3: Characteistic of the colledions usedto evaluate PlangP seacch andretrieval capablitie s.
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Figure 6: (a) Average recall (R) and precigon (P) for the AP89 collection distributed among400 peess. IDF is
TFXIDE IPF Ad.Wis TFxIPF with the adaptive stoppng heuristic on the Weibull distribution of documets. (b)
PlanetP5 recall as a function of communitysizefor a fix k£ of 20. (c) Numberof peess contactedwhenrequesing
differentnumbes of documets (k). IPF Ad.Wis TFxIPF with the adapive stoping heuristic. Bestis the minimum
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Second PlanetPscakswell, maintairing a cornstant
recal and predsion for communites of up to 1000
peergnotshovn hereto save spa®). We have notstudy
scaldility beyond thatpoint becasethe tracesarenot
sufficiently large.

Finally, PlanetPs adapive stgpping heuiistic is criti-
calto its performance As k& andor the numberof pees
grow, PlanetPmustcorntactmorepeesto achieve good
recal and precision. The adative stoping heuiistic
allows PlanetRo do this efficiently. ThefactthatPlan-
etPstars to contact mary morepeesatk > 150, see
Figure6(c), maybeanindicationthatthelinear depa-
deng of our stoging heuristic on k£ may be too ag-
gressve. PlaneP probablydoesnot needto contactthis
mary peersas,at this point, PlanetPs recdl catche up
to TFxIDF andin fact, outpaformsit slightly for some
of the othe collections
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8 RelatedWork

While current P2P sysems such as Napster [24],

Gnutella[15], andKaZaA[21] have been tremerdously

succeasful for music and video sharng communites,
their searchengines have beenfrustratindy limited.

Ourgoalfor PlanePis to increasehepowerwith which

userscanlocate information in P2Pcommunties. Also,

we have focused more tightly on text-basedinforma-
tion, whichis moreapprariatefor collectionsof scien

tific docunents,legal documants, invertory datalases,
etc.

In contrastto existing systens, recent reseach ef-
forts in P2P seekto provide the illusion of having a
globd hashtablesharel by all membersf thecommu-
nity. Framevorkslike Tapesty [32], Pastry[27], Chord
[30] and CAN [25] usedifferent techniques to spreal
(key, value) pairs acrcss the communty and to route
gueriesfrom ary memberto wherethe datais stored.
Thesesysemsdiffer from PlaneP in two key desigq
decisons. First, in PlanetPwe explicitly decided to
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replicatethe global direciory everywhereusing gossp-
ing, which limits PlanetPs scahbility. The advantage
that we get, however, is that we do not have to worry

abou what happesto partsof the global hashtable if

memberssign off abryptly from the communty. Also,

the entire commurity collaborateto spreadnformation
abou what eachpeerhasto share,insteal of putting

the publishing burdenentirdy onthesharirg peer Sec-
ond, we have focusedon content seach and retrieval,

attemping to provide a similar service to web seart

engnes,which noneof thesesystemdhave explored.

In addition to P2P systems PlanetPalso resembés
previouswork doneontuple spaces[13] andpublisher-
subgriber modek [11]. A disaussionof this body of
related work, however, is beyond the scopeof this pa-
per More recernly systam like Herald[4] have started
to studyself organizingsoluionsin environmerts sim-
ilar to ours. They have propacsed building a pub-
lish/subscibe sygem by using replicated seners on
P2Pnetworks.

Morerelatad to PlanetPs informationretrieval goals
Cori [5] and Gloss [17] addess the problems of
datalase selecton and ranking fusion on distributed
collections. Recen studes doneby Frenchetal. [12]
shawv that both scalewell to 900 nodes. Although
they arebaseal on different ranking techriques thetwo
rely on similar collection statistics. In both casesthe
amountof information usedto rank nodes is signif-
icany smaller than having a globd inverted index.
Glossneedsonly 2% of the space usedby a global in-
dex. Both Glossand Cori assumethe existenceof a
sener (or a hierarchyof senerg thatwill be available
for usesto decicewhich collectionsto contad. In Plan-
etPwe wantto empaver peas to work autcmomousy
andthereforewe distribute Bloomfilters widely sothey
cananswemueiesevenonthepresenceof network and
nodefailures.

9 Conclusions

P2P compding is a potentially powerful model for
information shaing betweenad hoc communites of
users As P2Pcommuirities grow in size,however, lo-
cating informationdistributed acrassthe large number
of peersbeamesproblematic In this pape, we have
presaetedPlanetPaP2Pinformation shaing infragruc-
ture that indexes communaldocunentsand supyorts
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distributed content seach and retrieval acrass them.
Our thess is that the seach paradgm, wherea small
setof relevanttermsis usel to locate documents,is as
natull aslocating documets by name. To be usetll,
however, the seart and retrieval algorithm mustsuc-
cessflly locate the information the useris searclng
for, without presating too muchunrelatedinformation.

PlanetPencompasestwo novel designdeckiion to
suppot aneffective P2Psearctengne. First, PlanetHs
basednrandmizedgossiping, which effectively toler-
atesthe dynamicity inherentin P2Pcommunties. Sec-
ond, PlanetPapprximatesa stae-of-the-arttext-based
documat ranking algarithm, the vectorspacemodel
instartiatedwith the TFxIDF ranking rule. A naive im-
plemenation of TFxIDF would requite eachpeg in a
communityto have accessto the invertedindex of the
entirecommunty. Instead, we showhow TFXIDF can
beapprximatedgivenacompad summary(the Bloom
filter) of eachpeetsinvertedindex.

We malke four contiibutions: (1) We showhow acon
tentseach andretrieval engine approimating a state
of-the-arttext rarking algorithm canbebuilt in the spe-
cific context of P2Pcomputng, (2) We shav thatgos
siping is an appiopriate mechansm for replicating in-
formation acrassa P2Pcommunty, (3) We show that
our seart andretrieval algorithm matctesthe peifor-
manceof TFxIDF, giving P2P communties a seart
andretriewal algolithm asgoodasthatpossble assim-
ing a centialized sener. (4) We showv that PlanetPs
gossping algarithm andcontentseart andretrieval al-
gorithm both scak well to communites of at leastser-
eralthousandpeers
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