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Abstract. We presentPlanetP, a peer-to-peer (P2P) con-
tent search and retrieval infrastructure targeting communi-
tieswishingto share large setsof text documents. P2Pcom-
puting is an attractive model for information sharing be-
tweenad hoc groupsof users becauseof its low costof en-
try and explicit modelfor resource scaling. As communi-
tiesgrow, however, a key challengebecomesfinding relevant
information. To addressthis challenge, our designcenters
around indexing, contentsearch, and retrieval rather than
scalablename-basedobjectlocation,which hasbeenthefo-
cusof recentP2Psystems.PlanetP takesthenovelapproach
of replicatingthe global directoryand a compact summary
index at everypeerusinggossiping. PlanetPthenleverages
this informationto approximatea state-of-the-art document
rankingalgorithmto helpusers locaterelevant information
within thelargecommunaldataset.Usingaprototypeimple-
mentationtogetherwith simulation, weshow: (i) it is possi-
ble to designa gossiping algorithmthat reliablymaintains a
copyof communal stateat eachpeeryetrequiresonlya mod-
estamount ofbandwidth,(ii) ourcontent searchandretrieval
algorithmtrackstheperformanceof theoriginal ranking al-
gorithmveryclosely, giving P2Pcommunities a search and
retrieval algorithmasgoodasthatpossibleassuminga cen-
tralizedserver, and(iii) PlanetP’s gossiping andsearch and
retrieval algorithms both scale well to communities of at
leastseveral thousandpeers.

1 Intr oduction

Wepresent PlanetP, apeer-to-peer (P2P)content search
and retrieval infrastructure targeted to communities�

PlanetPwassupportedin partby NSFgrantsEIA-0103722 and
EIA-9986046.

wishing to share large setsof text documents suchas
scientific publications, news articles, legal documents,
etc. P2P computing, where communal resources are
provideddirectly by membersof a community, is anat-
tractive modelfor informationsharing betweenad hoc
groupsof usersbecauseof its low costof entryandnat-
ural scaling model. Any two users wishing to sharein-
formation can form a P2Pcommunity using their ex-
isting computing resources. As individuals join the
community, they will bring moreresourceswith them,
allowing the community to grow naturally. Measure-
mentsof onesuchcommunity atRutgersshow over500
userssharing over 6TB of data;opencommunitiessuch
asGnutella [15] have achievedmuchgreater sizes [29].

The value of an information sharing community is
often directly proportional to its size: larger commu-
nities provide moreinformationto the individual users
and so provide greater value. As communities grow,
however, locating information becomesa critical chal-
lenge. We designed PlanetPspecifically to meet this
challenge.Unlikemany existing P2Psystemsthatfocus
on providing anefficient andextremelyscalable name-
basedobject location service [24, 23, 30, 27], our de-
signcenters around anindexing andcontentsearch and
retrieval core. This design is motivatedby the success
of theInternetsearchengines,whicharguesthatcontent
addressingis anintuitive paradigmfor users to manage
andaccess largevolumesof information.

By targeting the P2Pmodel, however, PlanetP must
face constraints not applicable to the current Internet
searchengines. Theseinclude: (a) there is no cen-
tralized administration, management, or coordination,
(b) communal resourcesmay fluctuate rapidly andun-
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Figure 1: A PlanetP community is a dynamic set of
peers wishing to share a set of documentsdistributed
across the peers’ local data stores. Peers continually
gossip to help each other maintain a local copyof the
global directory for content search andretrieval.

predictably as the presence of peers online is uncon-
trolled and unpredictable, and (c) resourcesare typi-
cally fragmentedandpotentially spread acrosswidege-
ographic areas. Theseconstraints meanthat PlanetP
cannot employ thecurrentmodelpracticedby all Inter-
netsearchengines:crawl theinformation sources,bring
the shared information to a centralized location with
massive computing power, and allow clients to query
thecentralizedinformationrepository.

PlanetPinsteadtakestheoppositeapproachof repli-
cating a compactsummaryof the entire index at every
peerusing gossiping [8]. More specifically, all mem-
bersof a PlanetPcommunity agreeto continually gos-
sip aboutchangesin the community to helpeach other
maintain a local copy of a global directory (Figure1).
This directory contains the namesandaddressesof all
current members, aswell asaBloomfilter [1] permem-
ber that summarizes the set of termscontained in the
documentsbeing shared by that member. Eachmem-
ber usesits copy of the directory to queryagainst and
retrieve matching documents from the collective infor-
mationstore of thecommunity.

Additionally, peers can optionally choose to imple-
ment an information brokerage service based on con-
sistent hashing [20] to optimize the location of new or
rapidly changing data.For example,whena document
is first introducedto thecommunity, thepublishing peer
may wish to publicize this fact using the information
brokerageservice sothatother peerscanfind thedocu-
mentwithout waiting until a new Bloom filter hasbeen
generated and gossiped everywhere. Note, however,
thatunlike systemssuchasChord[30], PlanetP’s infor-
mation brokerageservice only serves to optimize per-
formance.All of PlanetP’sservicescritically dependon
gossiping, not the information brokerage service. We

madethis explicit design decision becausegossiping is
well suited to the P2Penvironment, wherepeersmay
comeandgo freely; gossiping is never deterred by the
abrupt leaving or absenceof any subsetof peers.

Finally, to helpusersbetter navigatelargesetsof doc-
uments,PlanetPimplements a searchandretrieval en-
gine that is basedon a state-of-the-art text ranking al-
gorithm. A naive implementation of this ranking algo-
rithm wouldrequire each peerto havetheinvertedindex
of the entire community, which is costly both in terms
of bandwidth andstorage. Instead, we showhow this
algorithm canbe approximatedgiven PlanetP’s Bloom
filter summariesof peers’ inverted indexesgathered at
eachpeer.

In designing and prototyping PlanetP, we make the
following contributions: (1) We show how a content
searchand retrieval engine approximating a state-of-
the-art text ranking algorithm canbebuilt in thespecific
context of P2Pcomputing, (2) We show that gossiping
is anappropriatemechanismfor replicatinginformation
acrossaP2Pcommunity, (3) Usingfivebenchmarkcol-
lections from Smart[3] andTREC[19], we show that
our search andretrieval algorithm matchesthe perfor-
manceof theoriginal ranking algorithm, despite theac-
curacy that it gives up by using only a compact sum-
maryof eachindividual’s inverted index. (4) We show
that PlanetP’s gossiping algorithm and content search
andretrieval algorithm both scalewell to communities
of at leastseveral thousandpeers1.

2 Local Data Storesand Bloom Filters

PlanetPmaintains a local datastore at eachpeerof an
information sharing community. PlanetP assumes that
thebasic unit of storageis anXML document,allowing
it to index arbitrarydatafor search andretrieval, regard-
lessof the applications used to create and manipulate
the data.A peerpublishesan XML document to Plan-
etPwhenit wishesto share the document. Eachpub-
lishedXML documentcontainstext andpossibly links
(XPointers) to external files. PlanetPindexesany text

1While muchof our simulationdatasuggestthatPlanetPcould
scalewell beyond several thousandpeers,therearetwo concerns.
First, if we admit userswith only modem-speed connectivity, it is
difficult for themto downloadtheindex summaryandglobaldirec-
tory when they first join the community. Second,simultaneously
joining of a large numberof new memberswith large indexes to
sharecanrequirelargeaggregategossipingnetwork volume.
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in a published XML document2 as well as linked ex-
ternal files if they areof a knowntype (e.g.,postscript,
PDF, or text), thus providing backward compatibili ty
for peersto share andsearch for non-XML documents.
Eachpublished XML document is storedin the local
datastoreof the publishing peer; external files arenot
stored by PlanetP.

PlanetPstores the terms extracted from published
documentsin a local invertedindex. PlanetPsumma-
rizestheinvertedindex of eachpeerusing a Bloom fil-
ter [1] and, as shall be seenbelow, diffusesthis sum-
mary across the entire community to support commu-
nal contentsearch andretrieval. Briefly, a Bloom filter
is an arrayof bits usedto representa setof strings; in
our case, the setof termsin the peer’s invertedindex.
The filter is computed by obtaining H indices for each
term in the set, typically via H different hashing func-
tions, andsetting thebit at eachindex to 1. Then,given
a Bloom filter, we can ask, is someterm I a member
of the set by computing H indices for I and checking
whether those bits are 1. Bloom filters can give false
positive but never false negative. Thus,given a setof
Bloom filters summarizing peers’ invertedindexes,we
caneasily compute thesubsetof peers thatmaycontain
documentsrelevant to a givenquery.

We chooseto useBloom filters becausethey provide
four important advantages: (1) The Bloom filter is a
relatively efficient summarymechanism; for example,
to support a false positive rate of less than 5% when
using two hash functions, we would need1.9 KB to
summarize 1000 terms and 34 KB for 50,000terms.
(2) Previous studies of file systemshave shown that a
majority of files change very slowly [26, 10]. If P2P
informationcollections display thesamecharacteristic,
then, usingBloom filters, PlanetPwill place very little
load on the community for searchesagainst this bulk
of slowly changing data. (3) Peerscan independently
trade-off accuracy for storage. For example, a peer J
may chooseto combine the filters of several peersto
save space; thetrade-off is that J mustnow contactthis
set of peerswhenever a query hits on this combined
filter. This ability for independently trading accuracy
for storage is particularly useful for peersrunning on
memory-constrained devices(e.g.,hand-held devices).

2Currently, XML tagsareindexed simply asnormalterms.We
will extendPlanetPto make useof thestructureprovided by XML
tagsin thenearfuture.

(4) A peercanknowthatdocumentsrelevant to a query
might exist on peersthat are currently off-li ne. Thus,
instead of missingthese documentsas in current sys-
tems,the searching peer could arrange to rendezvous
with the off-l ine peers when they reconnect to obtain
theneeded information.

3 Gossiping

At theheartof PlanetPis its gossiping algorithm: Plan-
etP usesgossiping to replicate a global directory that
includesthe list of peers, their IP addresses,andtheir
Bloom filters at eachpeer in the community. Events
that change the directory and so require gossiping in-
cludethe joining of a new member, therejoin of a pre-
viously off-lin emember, andachangein aBloomfilter.
We do not gossip theleaving (temporary or permanent)
of a peer. Eachpeerdiscoversthat another peeris off-
line when an attemptto communicate with it fails. It
marksthe peerasoff-lin e in its directory but does not
gossip this information. Whenthe peer I comesback
on-line, its presencewill eventually be gossipedto the
entirecommunity; eachpeerthat hasmarked I asoff-
line in its directory changes I ’s status backto on-line.
If a peerhasbeenmarked asoff-lin e continuously forKMLONQP�R

time, then all information about it is dropped
from the directory under the assumption that the peer
hasleft thecommunity permanently.

PlanetP’s gossiping algorithm is a novel combina-
tion of rumormongering andanti-entropy aspreviously
introduced by Demerset al. [8] together with a par-
tial anti-entropyalgorithm thatwefound improvedper-
formance significantly for dynamic P2Penvironments.
Demerset al.’s algorithm works as follows. Suppose
thata peer I learns of a change to thedirectory (e.g.,it
just updatedits Bloom filter). Every

KTS
seconds,I ran-

domly choosesa target peer U believed to be currently
on-line andattempts to tell U of thechange. If U hasnot
heardof thischange,it recordsthenew information and
thenitself attemptsto spread therumoras I is doing. IfI contacts H peersin a row that already knows about
the change, it stops spreading the rumor. Because this
rumoring processcanleave a residual setof peers that
do not hearabout a rumor before it diesout, every so
often, eachpeerperformsananti-entropy operation in-
steadof rumoring. For example, in our implementation
of this algorithm, every tenthroundof rumoring (or if
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there’s currently no new informationto be rumored), a
peer I would sendan anti-entropy message instead of
a rumor. Theanti-entropy messageasksthe target U to
senda summaryof its entire directory to I . When I
getsU ’s summary, I parsesit to seewhetherU hasmore
updatedinformation. If so,then I asksU for theneeded
information. This combination of pushrumoring and
pull anti-entropy helps to reliably spreadnew informa-
tion everywhere.

In a dynamic P2Penvironment, however, whereru-
mors may arrive often because of peers’ leaving and
coming, the time required to spread a particular rumor
everywhere can becomehighly variable even with the
above combinedalgorithm. This is becausethehigh ar-
rival rateof new rumorsforcesthe rateof anti-entropy
to theminimum: every tenthround. If apeeris unlucky
enough to contact another peer that is also missinga
particular rumor, thenit may be several tensof rounds
before therumor reaches everyone. To fix this, we can
increasethe frequency of performing anti-entropy, say
to everyotherround or everyfifth round. Unfortunately,
anti-entropy is muchmoreexpensive thanrumoringbe-
cause a summaryof the entire directory mustbe sent.
Thus,we would be expending muchmorebandwidth,
reducing theefficiency of gossiping.

Instead, we decidedto extend eachrumoring round
with a partial anti-entropy exchange, which works as
follows. When I sends a rumormessageto U , U piggy-
backs the ids of a small number V of the mostrecent
rumors that U learned about but is no longer actively
spreading. I canthencheck to seewhetherit is missing
something that U recently learned about and pull that
information from U . This partial anti-entropy requires
only one extra message in the case that U does know
something that I doesnot. Further, theamount of data
piggybacked on U ’s message is very small, in order of
tensof bytes. We have found the inclusion of this par-
tial anti-entropy stepto significantly reduced the vari-
ation in the time required to inform the entirecommu-
nity about a particularnew piece of informationaswell
asrequiring muchlessbandwidth thanif we performed
anti-entropy moreoften.

Finally, PlanetPcurrently usesa basegossiping in-
terval

KWS
of 30 seconds to accommodate peers with

relatively slow communication links. PlanetPdynam-
ically adjusts this baseinterval to reducebandwidth us-
agewhenthesystemhasreachedastable configuration.
When a peer I does not have any rumor to spread, it

maintains a count X of the numberof timesit hascon-
tacteda peer that hasthe samedirectory asit does[8].
Whenever this count reaches a gossip-less threshold,
currently setto 2, I increasesits gossipinginterval by a
slowdownconstant, currently setto 5 seconds3. After
increasing its gossiping interval, I resets X to zeroand
continues.In this manner, thegossip intervalcangrad-
ually increaseto amaximumof 2 minutes.Ontheother
hand,whenever I receivesa rumor message or finds a
new pieceof information through anti-entropy, it im-
mediately resetsits gossiping interval to the default in
orderto efficiently diffuse this new information.

Dynamically adapting thegossiping interval hastwo
advantages. First, we do not need to definea termi-
nation condition given the probabilistic nature of the
algorithm. Second, whenglobal consistency hasbeen
achieved, the bandwidth useis negligible after a short
time.

4 Inf ormation Brokerage

While gossipingis anelegant solution for maintaininga
copy of theglobal directoryateachpeer, enabling peers
to accurately search the entirecommunal datastore,it
doeshavetwo disadvantages:(1) new or rapidly chang-
ing information spreadsslowly (e.g.,around10minutes
in communitiesof several thousandspeerswith ourcur-
rentsettings),and(2) informationis always diffuse ev-
erywhere, even if it is relevant to only a small subset
of the community. To addresstheselimitations, peers
in PlanetPcan also chooseto implement an informa-
tion brokerageservice thatusesconsistenthashing [20]
to publish and locate information. As already men-
tioned, however, this service is an optimization rather
thana necessarypart of PlanetP. In particular, this ser-
vice makesno guaranteeasto thesafetyof information
publishedto it. If a memberleaves abruptly without
passing on its portion of the publisheddata, that data
will be lost. (We showhow this unreliableservice can
be a useful optimization when discussingPlanetFS,a
semantic file systemthatwe arebuilding using PlanetP,
in Section6.)

PlanetP’s information brokerage service works as
follows. Informationis publishedto thebrokerageser-

3The variousconstants/parameterswe usewerefound to work
well in our currentsimulationbut canbe tunedasneededfor any
particularcommunity.
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vice as an XML snippet with a set of associatedkeys
(terms) and a discard time. The network of brokers
useconsistent hashing [20] to partition the key space
amongthem.In particular, eachactivememberchooses
a unique broker ID from a predetermined range (0 toVYJZIW[]\ ). Then,all membersarrangethemselvesinto a
ring usingtheir IDs. To mapa key to a broker, wecom-
putethe hash ^ of the key. Then,we sendthe snippet
andkey to the broker whoseID makesit the leastsuc-
cessor to ^_VY`bacVYJZIW[Z\ on the ring. The snippet is
discardedafter its discard time expires.

Therealcomplexity of implementing thisservice lies
in handling the dynamic joining and leaving of mem-
bers. Becauseof space constraints, however, and the
factthatthisservice is not central to thispaper, werefer
theinterestedreader to a longer technical report[7] for
thedetails of this part of theimplementation.

5 Content Search and Retrieval

PlanetPsupports two types of searches: an exhaustive
search thatweexpect to mostlybeusedby applications
written on top of PlanetP, anda selective search more
suitable to user-initiatedsearchesthat usesthe vector
spaceranking modelto choosethesubsetof documents
mostrelevant to a query.

5.1 Exhaustive Search

To exhaustively searcha PlanetPdatastore,anapplica-
tion poses a query representedasa conjunction of keys
separatedby white spaces. When presentedwith this
query, PlanetPsearchestheBloom filters in its local di-
rectory to obtaina list of candidatepeers that mayhave
documentsmatching thequery. Then,PlanetP contacts
thesecandidatepeersaswell astheappropriatebrokers
to retrieve matching XML documents. Onceall con-
tacted peershavereplied,thesetof retrieveddocuments
is returnedto thecaller.

Persistent Queries. PlanetPalsosupportspersistent
queries for exhaustive searches. Persistent queries al-
low peers to specify interest in new information en-
tering the systemwithout having to constantly poll as
well asproviding a way for applications to implement
traditional distributed mechanismslike condition vari-
ables, publish/subscribe communication, tuple spaces,
etc. When posting a persistent query, the poster pro-

vides an object that will be invoked whenever a new
matching snippet is found, either when a new Bloom
filter is received or a new snippet is published to the
brokers.

5.2 Vector SpaceRanking

To provideamoreselectivesearchthatwouldhelpusers
better navigate large setsof documents,we have im-
plementeda distributedranking algorithm basedon the
vector space model [31], a state-of-the-art text-based
ranking algorithm. In this section, we first give a brief
description of thevector spaceranking model,thendis-
cussthe changesthat we have introducedto adapt this
algorithm to PlanetP.

Background. In a vectorspaceranking model,each
document andqueryis abstractly representedasa vec-
tor, whereeachdimension is associatedwith a distinct
term; thespacewould have d dimensionsif there wered possible distinct terms. The value of eachcompo-
nentof thevectorrepresentstheimportanceof thatterm
(typically referred to asthe weightof the term) to that
document or query. Then,given a query, we rank the
relevanceof documentsto thatquery by measuring the
similarity betweenthe query’s vector and eachof the
candidatedocument’s vectors. The similarity between
two vectors is generally measured asthe cosine of the
angle betweenthem, computable using the following
equation: egf Vihkjmln\porq sut@vxwzy wg{ t}| y L { t~ � j � | � \ � (1)

where
y wg{ t

representsthe weight of term � for queryj and
y L { t

the weight of term � for document \ . Aegf Vihkjmln\po�q�� meansthat \ doesnot have any term
that is in j . A

egf Vihkj�ln\�o�q�� , on the other hand,
meansthat \ hasevery termthatis in j . Typically,

� j �
is droppedfrom the denominator of equation 1 since it
is constantfor all thedocuments.

A popular method for assigning term weights is
calledtheTFxIDF rule. Thebasicideabehind TFxIDF
is that by using somecombination of term frequency
(TF) in a documentwith the inverse of how often that
termshowsup in documentsin thecollection (IDF), we
canbalance: (a) thefactthat termsfrequently used in a
document arelikely important to describe its meaning,
and(b) termsthat appear in many documentsin a col-
lection arenot useful for differentiating between these
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documentsfor a particular query.
Existing literature includesseveral ways of imple-

menting the TFxIDF rule [28]. In our work, we adopt
thefoll owing systemof equationsassuggestedby Wit-
tenet al. [31]: [Z\�� t q�������h��������b� t oy L { t q�����������hx� L { t o y wg{ t q�[Z\�� t
where � is thenumber of documentsin thecollection,� t is thenumber of timesthatterm � appearsin thecol-
lection, and � L { t is thenumberof timesterm � appears
in document \ .

Theresulting similarity measure isegf Vihkjmln\porq s t@vxw y L { t | []\�� t~ � \ � (2)

where
� \ � q thenumber of termsin documentD.

PlanetP. We cannot implement the above relevance
ranking directly in PlanetPbecausewe do not have all
the necessary information. Instead, we approximate
this function by breaking theranking probleminto two
sub-problems: (1) ranking peersaccording to the like-
lihood of each peerhaving documents relevant to the
query, and(2) deciding on thenumberof peersto con-
tactandranking thedocumentsreturnedby thesepeers.

The node ranking problem. To rank peers, we in-
troduce a measure called the inverse peer frequency
(IPF).For aterm � , IPF

t
is computedas �����Wh��W�Y����� t o ,

where� is numberof peersin thecommunityand � t is
the numberof peers that have oneor moredocuments
with term � in it. Similar to IDF, the idea behind this
metricis thata termthatis presentin theindex of every
peeris not useful for differentiating between the peers
for aparticularquery. UnlikeIDF, IPFcanconveniently
be computed using the Bloom filters collectedat each
peer: � is thenumberof Bloom filters, � t is thenum-
berof hits for term � against theseBloom filters.

Given the above definition of IPF, we then propose
thefollowing relevancemeasure for ranking peers:��� hkj orq ¡t@vxw£¢Tt@vx¤M¥�¦ IPF

t
(3)

which is simply a weighted sum over all query terms
containedby peer

f
, weightedby how useful that term

is to differentiate between peers; � is a term, j is the
query, and §�� � is the set of termsrepresentedby the

Bloom filter of peer
f
, and

� �
is theresulting relevance

of peer
f

to query j . Intuitively, thisschemegivespeers
that contain all terms in a query the highest ranking.
Peersthatcontain differentsubsets of termsareranked
accordingto thepowerof thesetermsfor differentiating
betweenpeers with potentially relevant documents.

The selection problem. As communities grow in
size,it is neitherfeasiblenordesirableto contact a large
subset of peers for eachquery. Thus,once we have es-
tablisheda relevanceordering of peersfor a query, we
mustthendecide how many of themto contact. To ad-
dressthis problem, we first assumethat the userspeci-
fies an upperlimit d on the number of documentsthat
should bereturnedin responseto a query. Then,a sim-
ple solution to the selection problem would be to con-
tactthepeersoneby one, in theorderof their relevance
ranking,until we have retrieved d documents.

Unfortunately, this obvious approach leadsto terri-
ble retrieval performance[6]. To addressthis prob-
lem,weintroducethefoll owing heuristic for adaptively
determining a stopping point. Given a relevance or-
dering of peers,contact them one-by-one from top to
bottom. Maintain a relevanceordering of the docu-
mentsreturned using equation 2 with IPF

t
substituted

for IDF
t
.

Stopcontacting peerswhenthe documentsreturned
by a sequenceof X peers fail to contribute to the top d
ranked documents.Intuitively, the ideais to getan ini-
tial setof d documents andthenkeepcontacting nodes
only if the chance of them being able to provide doc-
umentsthat contribute to the top d is relatively high.
Using experimental results from a number of known
document collections (seeSection7), we proposethe
following function for X

Xpq_¨ª©«� �¬ ���� �®©c¨ d¯ �� (4)

where � is thesizeof thecommunity.

Note that while we have presented the above algo-
rithm ascontacting peersone-by-one, to reducequery
response time, we might choose to contact peersin
groups of V peersat a time. Sucha parallel algorithm
tradesoff potentially contactingsomepeersunnecessar-
ily for shorter responsetime.
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6 PFS: An Example Appli cation

We have implemented PFS,a personal semanticfile
system, to showhow the various componentsof Plan-
etPwork together to providea useful infrastructure for
informationsharing. PFSprovidessimilar functionality
to thesemantic file systemdefined by Gifford etal. [14].
PFS’s novelty lies in the fact that it supports content
querying acrossadynamic community of userswithout
requiring centralized indexing. PFSdoes not manage
storagedirectly. Filesarestored usingthelocal file sys-
temof eachpeer;files to besharedwith thecommunity
arepublishedto PFS, which thenusesPlanetPto make
it possible for theentire community to searchfor these
files based on its content.

EachuserusesPFSto share documentsandto create
a personal semantic namespaceover the set of shared
documents. Currently, eachnamespace is private to a
single user. Like the semantic file system, a directory
is createdin PFSwhenever theuser posesa query. PFS
createslinks to files that matchthe queryin the result-
ing directory. If a file is created or modifiedsuchthat
it matchessomequery, PFSwill update the directory
to have a link to this file. Building a query-based sub-
directory is equivalentto refining thequery of thecon-
taining directory.

PFS is comprised of three components: Explorer,
File Server, and PFSCore. The Explorer provides a
GUI interfaceto theuser. TheFile Server is avery sim-
ple webserver thatprovidestwo functions: (a) return a
URL whengiven a local pathname,(b) return the con-
tentof theappropriate file in responseto a GET opera-
tion.

Whentheuserpublishesa file, PFS(Core)obtainsa
URL for thatfile from theFile Server. PFSthenembeds
this URL anda pointer to thefile in a XML snippet and
publishesit to PlanetP, which automaticallyindexesthe
file. PFSalso asksPlanetPto publish the XML snip-
peton theinformation brokerageserviceusing the10%
most frequently appearing termsin the file with a dis-
card time of 10 minutes. All termsare automatically
summarized in the Bloom filter. This dual publication
allow peersto find a file in a very short time after pub-
lication if they aresearchingfor oneof thekey thatap-
pearsmostoften in the file. For other keys, the newly
publishedfile canonly be found whenthe new Bloom
filter hasbeencomputed and diffusedthroughout the
system.

Whentheusercreatesadirectory, PFSposesits name
asa persistentexhaustive query to PlanetP. File names
areextractedfrom snippetsreturnedby PlanetPanden-
tered in to the directory. PFSautomatically updates
directories for addition via PlanetP’s persistent query
upcalls. Updates for removal—that is, when a file is
deleted by its owner or modified to no longer map to
the directory’s query—is moredifficult. Whenever the
user opensa directory, PFSchecks the last time that
thedirectory wasupdated. If this time is greater thana
fixedthreshold, PFSrerunstheentirequeryto getrid of
stalefiles.

Given PlanetP, we were able to implement PFSin
lessthantwo weeks,with muchof thefirst weekgiven
to designingPFSgraphical interface.

7 PlanetPPerformance

We now turn to evaluatingPlanetP’s performance,con-
centrating on PlanetP’s gossiping algorithm and con-
tentsearch andretrieval engine.We refer theinterested
reader to [7] for theperformanceof theinformation bro-
kerage service. We begin by running a numberof mi-
cro benchmarksagainst our prototype implementation
to give an ideaof the costof basicPlanetP operations;
the prototype is written entirely in Java and currently
stands at around 7000 lines of code. Then, we study
thescalability of PlanetP’sgossipingalgorithm, bothin
termsof the time required to distribute information as
well as the required bandwidth. Finally, we study the
effectivenessof PlanetP’s content searchand retrieval
algorithm using a numberof benchmark data collec-
tions.

7.1 Micr o Benchmarks

Westart by measuring thecostsof PlanetP’sbasic oper-
ations: themanipulation of Bloomfilters andmanaging
the invertedindex of the local datastoreat eachpeer.
Table1 lists theseoperationsandtheir costswhenmea-
suredon an 800 MHz Pentium III PC with 512MB of
memory, running a Linux 2.2 kernel and IBM’ s JVM
v1.3.0. We observe that while we have not optimized
our implementation at all—for easeof implementation,
mostdatastructureswere implemented using the Java
Collections Framework—the costs after JIT compila-
tion is quite reasonable. For example, it takes only
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Operation Cost beforeJIT (ms) Cost after JIT (ms)

Bloom filter insertion 17 + (0.111 * no. keys) 4 + (0.011 * no. keys)
Bloom filter search 0.107* no. keys 0.010 * no. keys
Bloom filter compress 411+ (0.016 * no. keys in filter) 21 + (0.001 * no. keys in filter)
Bloom filter decompress 0.028 * no. keys in filter 0.005* no. keys in filter

Insertioninto invertedindex 5 + (0.137 * no. keys) 14+ (0.024 * no. keys)
Searchinvertedindex 0.024+ (0.001 * no. keys) 0.002 + (0.0001* no. keys)

Table1: Costsof PlanetP’s basic operations. Each cost is presentedas a fixedoverheadplus a marginal per key
overheador just thelatter; for example, thecostfor inserting H keys into a Bloomfilter is °�V²±³�®�µ´=�¶���·H .

Operation Cost (ms)

CPUgossipingtime 5ms
Basegossipinginterval 30sec
Max gossipinginterval 60sec

Network BW 56Kb/sto 45Mb/s
Messageheadersize 3 bytes
1000keys BF 3000bytes
20000 keys BF 16000 bytes
BF summary 6 bytes
Peersummary 48 bytes

Table2: Constantsusedin our simulation of PlanetP’s
gossiping algorithm.

about 1/2 a second to createa Bloom filter for 50,000
terms. It takesonly 50 ms to search for a query with
five termsacross1000Bloom filters.

We currently compressBloom filters to reduce the
gossiping bandwidth becauseweareusing constantsize
(50 KB) Bloom filters for easeof implementation. The
chosen size let us summarize up to 50,000 termswith
lessthan5% error. Our compressionscheme is a run-
length compressionthatusesGolombcodes[16] to en-
coderuns,which outperformsgzip in our specific con-
text. Table 1 shows that decompression, which occur
much more frequently, is reasonably efficient in time.
In thefuture, we will almost certainly move to variable
size filters and so the compression may no longer be
needed.

7.2 Gossiping

We have built a simulator to assess the reliability and
scalability of PlanetP’s gossiping algorithm. We used
measurementsof ourprototypeto parameterizethesim-
ulator; Table 2 list these parameters. We validated
our simulator by comparing its results against num-
bersmeasured on a cluster of eight 800 MHz Pentium

III PCswith 512MB of memory, running a Linux 2.2
kernel and the BlackDown JVM, version 1.3.0. We
switchedto BlackDown’s JVM for this study because
it hasa smallermemoryfootprint thanthe IBM JVM.
Evenwith thisswitch, theJVM’sresourcerequirements
effectively limited us to about 25 peersper machine,
allowing us to validate our simulation for community
sizesof up to 200peers.

Propagating new information. We begin by study-
ing thetime requiredto gossip a new Bloom filter sum-
marizing1000termsthroughout stable communitiesof
various sizes. We areusing1000wordsbecausePlan-
etPsends diffs of the Bloom filters to save bandwidth;
thus, this scenario simulatesthe addition of 1000 new
terms to somepeer’s inverted index. Measuring the
propagationtime is importantbecauseit is thewindow
of timewherepeers’ directoriesareinconsistent,sothat
somepeers may not be ableto find the new (or modi-
fied) documents.

Figure2(a)plots thesimulatedpropagation timesfor
six scenarios:

LAN Peersareconnectedby 45 Mbpslinks. Peersuse
PlanetP’s gossiping algorithm.

LAN-AE Peersareconnectedby 45 Mbpslinks. Peers
only usepush anti-entropy to propagateinforma-
tion asopposedto PlanetP’s combinedalgorithm.
Anti-entropy only approacheshave beensuccess-
fully usedto synchronize smallercommunitiesin
NameDropper [18], Bayou[9] andDeno[22]. In
fact,our first gossiping algorithm wasa push/pull
anti-entropy basedon these previous works. We
quickly realized,however, that the required band-
width grew rapidly with community size and so
movedmoretowardrumormongering.

DSL-10,30,60Peersareconnectedby 512Kbpslinks.

8
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Figure2: (a) Time, (b) aggregated network volume, and (c) average per-peer bandwidth required to propagate a
single Bloomfilter containing 1000keyseverywhere vs.communitysize.

PeersusePlanetP’s gossiping algorithm. Gossip-
ing intervalis 10,30,and60 secondsrespectively.

MIX Peersareconnected by a mixture of link speeds.
Usingmeasurementsof theGnutella/Napster com-
munitiesrecently reportedby Saroiuetal. [29], we
createamixtureasfollows: 9%have56kbps,21%
have 512 kbps, 50% have 5 Mbps, 16% have 10
Mbps,and4% have 45 Mbpslinks.

Figure 2(b) shows the aggregate network volume
usedto propagatethenew pieceof informationthrough-
out the community. Figure2(c) shows the averageper
peer gossiping bandwidth during the propagation pe-
riod for DSL-10,DSL-30,andDSL-60.

Basedon thesegraphs, we make several observa-
tions. (1) Propagation time is a log function of com-
munity size, implying that gossiping new information
is very scalable. For example, propagationtime for a
community with 500 peers usingDSL-30 is about 200
seconds,rising to only 230for a communitywith 1500
peers. For DSL-30, we have continuedthe simulation
for community sizesof up to 5000. At 5000,theprop-
agation time is still only 250seconds. (2) Eventhough
a change is diffused throughout the entire community,
the total number of bytes sent is very modest,again
implying that gossiping is very scalable. For example,
propagationof a 1000new keys only requiresa total of
11 MB to be sent, leading to a per-peeraverage band-
width requirementof less than 40 B/s when the gos-
siping interval is 30 seconds. (3) We can easily trade
off propagation time againstgossiping bandwidth by
increasingor decreasing the gossiping interval; slower
gossiping ratemeansslowerconvergencebut alsolower

bandwidth usage. (4) Our algorithm significantly out-
performsonethatusesonly anti-entropy for both prop-
agationtime andfor network volume. With respect to
network volume, this is becauseanti-entropy requires
thecommunicationof theentire directory (in summary
form), even when there is only one difference,mak-
ing message size proportional to the communitysize.
In PlanetP, since most information is spreadvia ru-
moring andthe partial anti-entropy, message sizesare
mostly proportional to the number of changes being
propagated,not the community size. With respect to
propagationtime,apush-only algorithm oftenhastrou-
ble locating the last few peersthat have not receive a
pieceof new information, and so is outperformed by
our push/pull algorithm.

Joining of new members. We now assess the ex-
penseof having new membersjoin anestablished com-
munity. We perform a slightly different experiment
thanthepreviousone; performingthesameexperiment
would leadto very similar conclusions except that the
required network volume (and so bandwidth) would
be somewhat higher if we assume that a new member
would bepropagatinga Bloom filter representing more
than 1000 keys. Instead, in this experiment, we start
a community of H peers and wait until their views of
membership is consistent. Then, V new peerswill at-
temptto join the community simultaneously. We mea-
surethetime requireduntil all membershave a consis-
tentview of thecommunity againaswell astherequired
bandwidth during this time. For this experiment, each
peerwas set to share 20,000 keys with the rest of the
communitythrough their Bloom filters.

Figure3 plots the time to reach consistency vs. the
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Figure4: Timerequiredto completegossipingaboutdynamiceventsfor (a) a setof peers joiningthecommunity, and
(b) normal operation of a dynamiccommunity, with peers comingandgoing; LAN-NPA is our gossiping algorithm
without the partial anti-entropy component; Join refers to whena peerarri vesback online, wishingto share 1000
new keys; Rejoin refers to whena peer arrives back online with no new information to share. (c) Aggregated
gossiping bandwidthper second for (b).
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Figure3: Timerequiredfor Ip¸¹�º����� peers to simulta-
neously join thecommunityof 1000stableonlinepeers,
each wishingto share20000 keys.

numberof joining peers for an initial community of
1000 nodes. Theseresults show that, if thereis suffi-
cient bandwidth (LAN), consistency is reached within
approximately 600 seconds (10 minutes), even when
the community grows by 25%. In contrast to propa-
gatingachange,however, thejoining processis amuch
morebandwidth intensive one; a joining membermust
retrieve 1000 Bloom filters representing a total of 20
million keysfrom theexisting community. Also, having
250membersjoin at oncemeansthat250Bloom filters
representing 5 million keys mustbe gossipedthrough-
out the community. As a result, convergence times
for communities interconnected only with DSL-speed
links are approximately twice that of LAN-connected
communities. Finally, convergencetimesfor theMIX-

connectedcommunities becomeunacceptable,possibly
requiring from 50 minutesto over two hours.

We draw two conclusions from theseresults. First,
even in this worst-casescenario for PlanetP, which we
do not expect to occur often, if peers have DSL or
higher connectivity, thenPlanetP does quite well. Sec-
ond,we needto modify PlanetPif we areto accommo-
dateuserswith modem-speedconnections. In particu-
lar, whenthey first join, the time to download the en-
tire directory would likely take too long. For example,
to downloada thousandBloom filters we would trans-
fer 16MB which takesaround 40 minuteson a modem
connection. Thus,either we should exclude peersthat
do not have at leastDSL speed, or we needto allow for
a new modem-connected peer to acquire the directory
in piecesover a muchlongerperiod of time. We would
alsoneedto support someform of proxy search,where
modem-connected peers canaskpeerswith bettercon-
nectivity to helpwith searches.

Further, we decided to modify our gossiping algo-
rithm to be bandwidth-aware, assuming that peers can
learn of eachother’s connectivity speed. The motiva-
tion for this is that a flat gossiping algorithm penalizes
thecommunity to spread informationonly asfastasthe
slow memberscango. Thus,we modify thebasicPlan-
etPgossiping algorithm for peerswith fasterconnectiv-
ity to preferentially gossip with eachothers and peers
with slower connectivity to preferentially gossip with
eachothers. This ideais implementedasfoll ows. Peers

10
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aredividedinto two classes,fastandslow. Fastincludes
peerswith 512 Kb/s connectivity or better. Slow in-
cludes peersconnected by modems. When rumoring,
a fast peer makes a binary decision to talk to a fast
or slow peer. Probability of choosing a slow peer is
1%. Oncethe binary decision hasbeen made,the peer
choosesa particular peerrandomly from the appropri-
atepool. Whenperforming anti-entropy, a fastpeeral-
wayschoosesanother fastpeer. Whenrumoring, aslow
peeralwayschoosesanotherslow guy (sothatit cannot
slow down thetarget peer) unless it is thesource of the
rumor; in this case, it choosesa fastpeerasthe initi al
target. Finally, when performing anti-entropy, a slow
peerchoosesany node with equalprobability. We will
study theeffectsof this modifiedalgorithm below.

Dynamic operation. Finally, we study how well
PlanetP’s gossiping performs in a dynamiccommunity
of rejoining and leaving peers. We begin by studying
the potential for interference betweendifferent rumors
aspeers rejoin the community at different times. This
experiment is asfollows. We have a stable community
of 1000 online peers; 100 peers join the community
according to a Poissonprocesswith an averageinter-
arrival rateof once every 90 seconds. Figure4(a)plots
thecumulative percentageof eventsagainst theconver-
gence time (how long before an arrival event is known
to everyone in the community) for PlanetP’s gossip-
ing algorithm againstwhat happensif the partial anti-
entropy is not included. Observe that without the par-
tial anti-entropy, overlapping rumorscaninterferewith
eachother, causing muchlarger variation in theconver-
gence times.

To complete our exposition, we study a dynamic
community with the following behavior. The total
membership of the community is 1000 members.40%
of the membersare online all the time. 60% of the
membersare online for an average of 60 minutes and
thenoffline againfor an average of 140 minutes. Both
online andoffline timesaregeneratedusing a Poisson
process.5% of thetime,whena peerrejoinstheonline
community, it has1000 new keys. Theseparameters
wereagainbasedroughly onmeasurementsreportedby
Saroiuet al. [29] (except for the number of new keys
being sharedoccasionally) andare meantto be repre-
sentative of realcommunities.

Figure4(b) plotsthecumulativepercentageof events
against the convergencetime. We observe that with
sufficient bandwidth, convergence time is very tight
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Figure5: Convergence time for a dynamiccommunity
with 2000members.

around 400 seconds. For the MIX community, our
bandwidth awaregossipingalgorithm allowspeerswith
fastconnectionsto learnabout eventsmuchmoreexpe-
ditiously than peers with slow connections. Even for
peerswith fastconnections, however, the convergence
times are much more variable. This is becausefast
peerssometimestill have to talk to slow peers and so
their progressmay be impeded. When looking closer
into thefastnodesconvergencetime, we found that up
70% of the nodeswereableto seeall other fastnodes
asquickly asin theLAN case.

Figure 4(c) plots the aggregate bandwidth against
time. This graph shows that the normaloperation of a
communityrequiresverylittl ebandwidth,ranging from
between100KB/s to 1 MB/s acrosstheentire commu-
nity.

Finally, Figure5 plots the cumulative percentageof
eventsagainst convergencetimefor adynamiccommu-
nity of 2000peers. LAN andMIX areasbefore. MIX-
F gives convergence time for joins and rejoins of fast
peerswith the convergence condition being that only
fastpeersneedto learnabout the event. MIX-S gives
convergence time for joins and rejoins of slow peers
with thesameconvergencecondition. Observe thatour
bandwidth aware gossiping algorithm allow fast peers
to learnaboutnew eventsquite efficiently. At thesame
time, it doesnot harm the slow peers beyond the fact
that they will be slow anyway because of their band-
width limitations.

Summary. Resultsacross the above set of experi-
mentssuggestthat gossiping works reliably andscales
well to the range of several thousandpeers. The two
concerns for scaling beyond this level is the time re-
quired to downloadtheentire setof Bloom filters when
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a peerfirst joins a community if thatpeeris bandwidth
limited, andthe aggregatebandwidth required for new
membersto join thecommunity.

7.3 Search efficiency

We now turn to assessingtheperformanceof PlanetP’s
search andretrieval engine. We measure performance
using two accepted metrics, recall (

�
) and precision

( » ), which aredefinedasfoll ows:

� hkj orq no. relevant docs.presentedto theuser
total no. relevant docs.in collection

(5)

»�hkj orq no. relevantdocs. presentedto theuser
total no. docs. presentedto theuser

(6)

where j is the query posted by the user.
� hkj¼o cap-

tures the fraction of relevant documentsa searchand
retrieval algorithm is ableto identify andpresent to the
user. »�hkj o describeshow muchirrelevantmaterial the
usermayhave to look through to find the relevant ma-
terial. Ideally, onewould like to retrieveall therelevant
documentsand not a single irrelevant one. If we did
this, we would obtain a 100% recall and 100% preci-
sion. Also ideally, we would want to contact as few
peersaspossibleto achieve100%recalland100% pre-
cision.

We assess PlanetP’s performanceby comparing its
achieved recall andprecision against the original TFx-
IDF algorithm. If we can match the TFxIDF’s per-
formance, then we can be confident that PlanetPpro-
vides state-of-the-art search andretrieval capabilities4,
despite theaccuracy thatit givesupby gossiping Bloom
filters rather thantheentireinvertedindex.

Weusefivecollectionsof documents(andassociated
queriesandhumanrelevanceranking) to measurePlan-
etP’s performance;Table 3 presents the main charac-
teristics of thesecollections. Four of the collections,
CACM, MED, CRAN, and CISI werepreviously col-
lected andused by Buckley to evaluateSmart[3]. These
collectionsarecomprisedof smallfragmentsof text and
summaries andso arerelatively small in size. The last

4when only using the textual contentof documents, as com-
paredto link analysisas is doneby Googleandotherweb search
engines[2]

collection, AP89, was extracted from the TREC col-
lection [19] and includesfull articles from Associated
Presspublishedin 1989.

To measurePlanetP’s recall and precision on the
above collections, we built a simulator that first dis-
tributesdocumentsacrossasetof virtual peersandthen
runs and evaluates different search and retrieval algo-
rithms. The distribution of documentson our simu-
lation foll ows a Weibull function, which is motivated
by observing current P2Pfile-sharing communities. (In
[6], we alsostudya uniform distribution andshow that
PlanetPdoesequally well although it has to contact
more peersas documentsare more spread out in the
community.) To comparePlanetP with TFxIDF, we as-
sumethe following optimistic implementation of TFx-
IDF: eachpeerin the community hasthe full inverted
index and word count needed to run TFxIDF using
ranking equation 2. For eachquery, TFxIDF would
computethetop d ranking documentsandthencontact
the exact peers required to retrieve these documents.
In both cases,TFxIDF andTFxIPF, the simulator will
pre-processthe tracesby doing stopword removal and
stemming.Theformertriesto eliminatefrequently used
wordslike the, of, etc. andthe second tries to conflate
wordsto their root (e.g.running becomesrun ).

Figure6(a)plotsTFxIDF’sandPlanetP’saveragere-
call andprecisionover all providedqueriesasfunctions
of d for the AP89 collection. We only show results
for this collection to save space; theseresults arerepre-
sentative for all collections. We refer the reader to our
web site, http://www.panic-lab.rutgers.edu/, for results
for all collections. Figure 6(b) plots PlanetP’s recall
against community sizefor a constant d of 20. Finally,
Figure6(c) plots thenumber of peerscontactedagainstd .

We make several observations. First, usingTFxIPF
andour adaptive stopping condition, PlanetPtracks the
performanceof TFxIDF closely. It performs slightly
worse than TFxIDF for d¾½¿� ¯ � but catches up for
larger d ’s. In fact, for someof the collections, TFx-
IPF slightly outperformsTFxIDF at large d ’s. While
theperformancedifferenceis negligible,it is interesting
to consider how TFxIPF canoutperform TFxIDF; this
is possible sinceTFxIDF is not alwayscorrect. In this
case,TFxIPF is finding lower ranked documentsthat
weredeterminedto be relevant to queries, while some
of the highly ranked documentsreturned by TFxIDF,
but not TFxIPF, werenot relevant.
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Trace Queries Documents Number of words Collection size(MBs)

CACM 52 3204 75493 2.1
MED 30 1033 83451 1.0
CRAN 152 1400 117718 1.6
CISI 76 1460 84957 2.4
AP89 97 84678 129603 266.0

Table3: Characteristic of thecollectionsusedto evaluatePlanetP search andretrieval capabilities.
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Figure 6: (a) Average recall (R) and precision (P) for the AP89collectiondistributed among400 peers. IDF is
TFxIDF. IPF Ad.Wis TFxIPF with the adaptive stopping heuristic on the Weibull distribution of documents. (b)
PlanetP’s recall as a function of communitysizefor a fix d of 20. (c) Numberof peers contactedwhenrequesting
differentnumbers of documents ( d ). IPF Ad.Wis TFxIPFwith theadaptive stopping heuristic. Bestis theminimum
numberof nodes that canbecontactedto retrieve d documents using therelevancejudgments.

Second, PlanetPscaleswell, maintaining a constant
recall and precision for communities of up to 1000
peers(notshown hereto savespace). Wehavenotstudy
scalability beyond that point becausethe tracesarenot
sufficiently large.

Finally, PlanetP’s adaptive stoppingheuristic is criti-
cal to its performance. As d and/or thenumberof peers
grow, PlanetPmustcontactmorepeers to achieve good
recall and precision. The adaptive stopping heuristic
allows PlanetPto do this efficiently. ThefactthatPlan-
etPstarts to contact many morepeers at d�À¾� ¯ � , see
Figure6(c), maybeanindicationthatthelinear depen-
dency of our stopping heuristic on d may be too ag-
gressive. PlanetPprobablydoesnotneedto contactthis
many peersas,at this point, PlanetP’s recall catches up
to TFxIDF andin fact,outperformsit slightly for some
of theother collections.

8 RelatedWork

While current P2P systems such as Napster [24],
Gnutella[15], andKaZaA[21] havebeen tremendously
successful for music and video sharing communities,
their searchengines have been frustratingly limited.
Ourgoalfor PlanetPis to increasethepowerwith which
userscanlocate information in P2Pcommunities.Also,
we have focused more tightly on text-basedinforma-
tion, which is moreappropriatefor collectionsof scien-
tific documents,legal documents, inventory databases,
etc.

In contrast to existing systems, recent research ef-
forts in P2Pseekto provide the illusion of having a
global hashtableshared by all membersof thecommu-
nity. FrameworkslikeTapestry [32], Pastry[27], Chord
[30] and CAN [25] usedifferent techniques to spread
(key, value) pairs across the community and to route
queries from any memberto wherethe datais stored.
Thesesystemsdiffer from PlanetP in two key design
decisions. First, in PlanetP, we explicitly decided to
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replicatetheglobal directory everywhereusing gossip-
ing, which limits PlanetP’s scalability. The advantage
that we get, however, is that we do not have to worry
about what happens to partsof the global hashtableif
memberssign off abruptly from the community. Also,
theentire community collaborateto spreadinformation
about what eachpeerhasto share,instead of putting
thepublishing burdenentirely on thesharing peer. Sec-
ond, we have focusedon content search and retrieval,
attempting to provide a similar service to web search
engines,which noneof thesesystemshave explored.

In addition to P2Psystems, PlanetPalso resembles
previouswork doneon tuplespaces[13] andpublisher-
subscriber models [11]. A discussionof this body of
related work, however, is beyond the scopeof this pa-
per. More recently system like Herald[4] have started
to studyself organizingsolutions in environments sim-
ilar to ours. They have proposed building a pub-
lish/subscribe system by using replicated servers on
P2Pnetworks.

Morerelated to PlanetP’s informationretrieval goals,
Cori [5] and Gloss [17] address the problems of
database selection and ranking fusion on distributed
collections. Recent studies doneby Frenchet al. [12]
show that both scale well to 900 nodes. Although
they arebased on different ranking techniques, the two
rely on similar collection statistics. In both casesthe
amount of information usedto rank nodes is signif-
icantly smaller than having a global inverted index.
Glossneedsonly 2% of the space usedby a global in-
dex. Both Gloss and Cori assumethe existenceof a
server (or a hierarchyof servers) that will be available
for usersto decidewhichcollectionsto contact. In Plan-
etPwe want to empower peers to work autonomously
andthereforewedistributeBloomfilters widely sothey
cananswerqueriesevenonthepresenceof network and
nodefailures.

9 Conclusions

P2P computing is a potentially powerful model for
information sharing betweenad hoc communities of
users. As P2Pcommunities grow in size,however, lo-
cating informationdistributedacrossthe large number
of peersbecomesproblematic. In this paper, we have
presentedPlanetP, aP2Pinformation sharing infrastruc-
ture that indexes communaldocumentsand supports

distributed content search and retrieval across them.
Our thesis is that the search paradigm, wherea small
setof relevant termsis used to locate documents,is as
natural as locating documents by name. To be useful,
however, the search and retrieval algorithm must suc-
cessfully locate the information the user is searching
for, withoutpresenting toomuchunrelatedinformation.

PlanetPencompassestwo novel designdecision to
support aneffectiveP2Psearchengine. First,PlanetPis
basedonrandomizedgossiping, whicheffectively toler-
atesthedynamicity inherent in P2Pcommunities. Sec-
ond,PlanetPapproximatesa state-of-the-arttext-based
document ranking algorithm, the vector-spacemodel
instantiatedwith theTFxIDF ranking rule. A naive im-
plementation of TFxIDF would require eachpeer in a
communityto have accessto the invertedindex of the
entirecommunity. Instead,we showhow TFxIDF can
beapproximatedgivenacompact summary(theBloom
filter) of eachpeer’s invertedindex.

Wemakefour contributions:(1) Weshowhow acon-
tent search andretrieval engine approximating a state-
of-the-art text ranking algorithm canbebuilt in thespe-
cific context of P2Pcomputing, (2) We show that gos-
siping is an appropriate mechanism for replicating in-
formation across a P2Pcommunity, (3) We show that
our search andretrieval algorithm matchesthe perfor-
manceof TFxIDF, giving P2P communities a search
andretrieval algorithm asgoodasthatpossible assum-
ing a centralized server. (4) We show that PlanetP’s
gossiping algorithm andcontentsearch andretrieval al-
gorithm bothscale well to communitiesof at leastsev-
eral thousandpeers.
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